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1 Introduction

In algebraic geometry one studies spaces as follows: Let Spaces be a category of spaces and Alg be some
algebraic category. Assume R is an algebraic object in Spaces, then has Spaces(S,R) a natural algebraic
structure such that Spaces(S,R) ∈ Alg. So we get a (contravariant) functor

Spaces(−,R) : Spaces→ Alg : S 7→ Spaces(S,R).

So for example one considers Spaces := Schemes, the category of schemes and Alg := CRing, the
category of commutative unital rings.
The choice of Alg and R is dependent on which properties of the spaces are needed to be studied. In this
paper we are concerned with studying the open subsets of a space. In order to achieve this, one can choose
R as the Sierpinski space S := ({0, 1}, {∅, {1}, {0, 1}}). The reason for this is that S classifies the open
subsets in the following way: Let S ∈ Top a top. space, then for each U ⊆ S open, there exists a unique
continuous map χU : S → S such that the following diagram commutes

U S

{?} S

χU

1

We call χU is the characteristic map of U in X and is given by χU (x) = 1 ⇐⇒ x ∈ U . Moreover, this
map is universal in the sense that if χU (V ) = 1, we have V ⊆ U . So U is the biggest open subset of S
for which the diagram commutes. Consequently, if we denote by O(S) the topology on S, i.e. the set of
open subsets, we have a bijection between Top(S,S) and O(S). So in the spirit of algebraic geometry, the
question remains whether we can put some algebraic structure on O(S). As algebraic structure, we use its
poset structure where the algebraic operations are the suprema and infima.
Another reason that an algebraic geometer is interested in O(S), is because the sheaf property is/can
be expressed using purely (the poset structure of) the open sets of S. So in order to test whether a
property holds for arbitrary (Grothendieck) topoi, one can first test it for topoi on topological spaces and
(afterwards) on nice poset categories which generalize O(S).
So in the rest of the paper we first study those posets which behave like O(S), which will be called locales.
Then we study those grothendieck topoi, where the underlying category is a locale.

2 Frames and Heyting algebras

As mentioned in the introduction, we would like to describe the poset structure of the open sets of a
topological space S. The axioms of a topology says precisely that, as a poset, O(S) has arbitrary suprema,
finite infima which contains a bottom and top element. Since the suprema and (finite) infima are the union
and intersection we automatically have some distributivity property which leads precisely to the definition
of a frame:

Definition 1. A frame is a bounded lattice F with all finite infima, all (arbitrary) suprema which satisfies
the following distributivity axiom:

x ∧
∨
i

yi =
∨
i

(x ∧ yi) , ∀x, yi ∈ F.
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In the definition of a frame, we only have finite infima because an arbitrary intersection of opens is not
necessarily open, but one can take the interior so that O(S) indeed has all infima. This holds also in every
frame F by the formula

∧
K =

∨
{x ∈ F |∀y ∈ K : x ≤ y} (for K ⊆ F ). We can therefore also ask whether

we shouldn’t demand the following distributivity rule:

x ∨
∧
i

yi =
∧
i

(x ∨ yi) .

This does in general not hold:

Example 1. In O(S), the (arbitrary) infima is given by:

∧
i

Ui = int

(⋂
i

Ui

)
.

Consider R with the Euclidean topology and let

U := Rr {0}, Vε := (−ε, ε), ε > 0.

So
∧
ε>0 Vε = int({0}) = ∅ and U ∨ Vε = R, thus

U ∨
∧
ε

Vε = Rr {0} 6= R =
∧
ε

(U ∨ Vε) .

So, using the notation of the introduction, the objects of Alg can indeed be chosen to be the frames,
so we know need to know what happens at the level of the morphisms.

Definition 2. A morphism of frames from X to Y is defined to be a function X
f−→ Y which preserves

the finite infima and all suprema. The category of frames with these morphisms is denoted by Frm.

Since a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a, a morphism of frames is automatically a morphism of
posets and it preserves the top and bottom element because

∨
∅ = 0,

∧
∅ = 1.

Since infinite infima does in general not behave so well (w.r.t. distributivity), one can also expect that
frame morphisms does not necessarily preserve arbitrary infima which is indeed the case:

Example 2. Let f ∈ Top(S, T ), consider

f−1 : O(T )→ O(S) : U 7→ f−1(U).

That this is a morphism of frames follows because the inverse image f−1 preserves unions and (finite)
intersections.
Let τE be the euclidean topology on R and let τ be the coarsest topology containing τE and {0}. Consider

f = Id : (R, τ)→ (R, τE).

Since τ contains τE , this function is continuous. Let Uε := (−ε, ε) for ε > 0. Then∧
f−1(Uε) =

∧
Uε = {0} 6= ∅ = f−1(∅) = f−1(

∧
Uε).

In the previous example, we assign to a continuous function S
f−→ T , a morphism of frames O(T )

f−1

−−→
O(S). It is not possible to define a natural frame morphism of the form O(S) → O(T ). A first reason is
that f is in general not open, so U 7→ f(U) is not well-defined. A way around this would be to consider
f−1 as a poset morphism which then has a right adjoint given by the following lemma, but it turns out
that this adjoint is not a morphism of frames.
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Lemma 1. A frame morphism φ : B → A (considered as a poset morphism) has a right adjoint ψ : A→ B.

Proof. By the right adjoint ψ of φ, we mean the following: Consider A and B as poset categories, φ then
corresponds with a functor and ψ is then the right adjoint of this functor. So the adjoint property

A(φ(b), a) ∼= B(b, ψ(a)),

means precisely
φ(b) ≤ a ⇐⇒ b ≤ ψ(a). (1)

Define
ψ : A→ B : a 7→

∨
{b ∈ B|φ(b) ≤ a} .

Then ψ clearly satisfies (1) and if a1 ≤ a2, then ψ(a1) ≤ ψ(a2), which is the condition for being a poset
morphism.

Note that, because ψ is a right adjoint, it preserves all limits, thus in particular all infima, but in
general it does not preserve suprema which shows that ψ is not always a morphism of frames as proven in
the following example:

Example 3. Let f ∈ Top(S, T ). The right adjoint of f−1 (defined previously) considered as a poset
morphism, is given by:

f? : O(S)→ O(T ) : U 7→
⋃{

V ∈ O(T )|f−1(V ) ⊆ U
}
.

Let S = T = {0, 1}. Let τd := P(S) be the discrete topology on S and τs = {∅, {1}, {0, 1}} the sierpinski
topology. Consider

({0, 1}, τd)
f=Id−−−→ ({0, 1}, τs).

Since τs is coarser then τd, it is continuous. We now claim that f? = Id? does not preserve suprema,
indeed: For U ∈ τd we have:

Id?(U) =
⋃
{V ∈ τs|V ⊆ U} .

So

Id?({0}) = ∅
Id?({1}) = {1}

Id?({0, 1}) = {0, 1}

implies
Id?({0}) ∪ Id?({1}) = {1} 6= {0, 1} = Id?({0, 1}).

which shows that f? does not preserves suprema and hence is not a morphism of frames.

So we conclude that instead of working in the category Frm of frames (with morphism of frames), we
want to work in its opposite category Locale, called the category of locales. So a frame is considered as
an algebraic poset while a locale will be thought of as a geometrical poset or as a generalized space.
By definition of the opposite category, locales are the same as frames, but the morphisms are different.
Another category which has the same objects but different objects is cHa, the category of complete Heyting
algebras. So we now review those algebras and argue why that is not the wanted category.

Definition 3. A Heyting algebra is a poset which (seen as a category) is finitely complete, finitely
cocomplete and cartesian closed. More explicitly: It is a lattice P with top and bottom element such that
for each x, y ∈ P , there is some element (x =⇒ y) ∈ P , called the exponential, which is characterized
by

∀z ∈ P : z ≤ (x =⇒ y) ⇐⇒ z ∧ x ≤ y.

Proposition 1. A lattice is a frame if and only if it is an Heyting algebra.
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Proof. Every frame is a Heyting algebra, one can see this concretely by

(x =⇒ y) :=
∨
{w|w ∧ x ≤ y} .

For the converse: In a lattice, we always have
∨

(x∧ yi) ≤ x∧ (
∨
yi). The other inequality follows because:

x ∧
(∨

yi

)
≤
∨

(x ∧ yi) ⇐⇒
∨
yi ≤

(
x =⇒

∨
(x ∧ yi)

)
⇐⇒ ∀i : yi ≤

x =⇒
∨
j

(x ∧ yj)


⇐⇒ ∀i : yi ∧ x ≤

∨
j

(x ∧ yj)

This result also follows from the adjoint functor theorem since cartesian closedness can be expressed
as saying that x ∧ − : P → P has a right adjoint.

Definition 4. A morphism of Heyting algebras is a morphism of frames which preserves exponentials.

We will show that not each frame morphism preserves exponentials, but first we introduce complemen-
tation in a lattice:

Definition 5. Let L be a lattice with bottom 0 and top 1. A complement for x ∈ L is some y ∈ L such
that x ∧ y = 1 and x ∨ y = 0.

In a distributive lattice (so in particular in a frame), a complement is unique and in this case we denote
the complement of x by ¬x.

Recall that a boolean algebra is a distributive algebra with bottom and top in which every element
has a complement:

Proposition 2. Let B be a boolean algebra. Then is B a heyting-algebra by letting (x =⇒ y) = ¬x ∨ y.

One can characterize boolean algebras as certain heyting-algebras. In order to specify this, we define
the negation of an element x in a Heyting algebra is ¬x := (x =⇒ 0).

Proposition 3. In a boolean algebra, the complement and negation coincide and consequently, a lattice is
a boolean algebra if and only if it is a heyting algebra and x ∨ ¬x = 1.

The following example shows that for f ∈ Top(Y,X), the induced frame-morphism f−1, does in general
not preserves the negation (and thus the implication), so f−1 is not a heyting algebra morphism:

Example 4. Let R have the euclidean topology. For each U ∈ O(R) we have ¬U = int(RrU). We want
to show that in general f−1(¬U) 6= ¬f−1(U). Let

0 ≡ f : R→ R : x 7→ 0,

be the constant 0-function and let U := (−∞, 0). Thus ¬U = int([0,∞)) = (0,∞), so f−1(¬U) = ∅ since
0 6∈ (0,∞).
Since 0 6∈ (−∞, 0), we have f−1(U) = ∅, consequently:

¬f−1(U) = int(Rr f−1(U)) = int(Rr ∅) = R.
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3 Locales

Motivated by the previous section, we define the category Locale of locales to be the opposite of the
category Frm of frames (with morphisms of frames), i.e. Locale := Frmop.
We denote by

O : Locale→ Frm,

the anti-equivalence functor. We also have the evident functor

Loc : Top→ Locale

Both will be used implicitly throughout the text and we use the following convention:

Notation 1. Let Space ∈ {Locale,Top}. For A ∈ Space an object and f ∈ Space a morphism, we
denote by O(A) its corresponding frame and f−1 the corresponding frame morphism. Usually we denote
topological spaces by S, T and locales by X,Y which will make the distinction and otherwise the reader has
to pay close attention.

Since a locale will be thought of as a generalized space, we will introduce concepts based upon the
notion of topological spaces. We first introduce the notion of a point in a locale which then leads to the
right adjoint of Loc : Top → Locale. Then we will show that this adjunction becomes an equivalence of
categories when we restrict to a certain subcategory.
Then we also introduce the notions of sublocales, embeddings and surjections which allows us to give (and
show) that we have some nice factorization system on Locale and as an application we introduce the
notion of open and closed sublocales.

3.1 Points and Sober spaces

Let S be a topological space and ? be the 1-point top. space, i.e. the terminal object in Top. Since there
is a bijection between S and Top(?, S) (given by sending s ∈ S to s̃ : ?→ S : ? 7→ s), we define a point of
a locale as follows:

Definition 6. A point of a locale X is a morphism (of locales) p : 1→ X, where 1 is the terminal object
in Locale. We denote by Pt(X) := Locale(1, X) the set of points of X.

Remark 1. That Locale has indeed a terminal object is because {0, 1} is initial in Frm. So a point p of
X is given (equivalently) by a frame morphism p−1 : O(X)→ {0, 1}.

Lemma 2. Let F be a frame. A function f : F → {0, 1} is a morphism of frames if and only if its kernel
K := f−1(0) satisfies: 

1F 6∈ K,
x ∧ y ∈ K ⇐⇒ x ∈ K or y ∈ K,∨
xi ∈ K ⇐⇒ ∀i : xi ∈ K.

(2)

Proof. These 3 properties are equivalent to
f(1F ) = 1,

f(x ∧ y) = 0 ⇐⇒ f(x) ∧ f(y) = 0

f(
∨
xi) = 0 ⇐⇒ ∀i : f(xi) = 0.

The first (resp. second) equation is equivalent to f(x ∧ y) = f(x) ∧ f(y) (resp. f(
∨
xi) =

∨
f(xi)) since

cod(f) = {0, 1}. Notice that the condition f(1F ) = 1 is necessary to force f(
∧
∅) = 1.

Since a function F → {0, 1} is completely defined by the set f−1(0), we conclude that a point can
equivalently be defined as a subset K which satisfies (2).
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Lemma 3. Let F ∈ Frm. There is a bijection between the subsets K ⊆ F satisfying (2) and the proper
prime elements, i.e. p ∈ F such that{

1F 6= p,

x ∧ y ≤ p ⇐⇒ x ≤ p or y ≤ p.

Proof. The bijection is given by K 7→
∨
K, p 7→↓ {p}.

Assume K ⊆ F satisfy (2) and let p :=
∨
K. We claim that K =↓ {p}, indeed: since K is closed under all

suprema we have p =
∨
K ∈ K and if x ≤ p then is p = p ∨ x from which it follows that x ∈ K.

Thus x ∈ K ⇐⇒ x ≤ p and in particular

x ∧ y ≤ p ⇐⇒ x ∧ y ∈ K ⇐⇒ x ∈ K or y ∈ K ⇐⇒ x ≤ p or y ≤ p.

So p is indeed a prime element and it is proper since 1F 6∈ K
Now assume that p ∈ F is proper prime. Let K :=↓ {p}, i.e. x ∈ K ⇐⇒ x ≤ p. Since p is proper,
1F 6∈ K. That K is closed under binary infima follows from:

x ∧ y ∈ K ⇐⇒ x ∧ y ≤ p ⇐⇒ x ≤ p or y ≤ p ⇐⇒ x ∈ K or y ∈ K.

That K is closed under arbitrary suprema follows from:∨
xi ∈ K ⇐⇒

∨
xi ≤ p ⇐⇒ ∀i : xi ≤ p ⇐⇒ ∀i : xi ∈ K.

That the assignments induce a bijection follows since K =↓ {
∨
K}.

So all together, we conclude:

Corollary 1. There is a bijection between:

1. the points p of X,

2. subsets K ⊆ O(X) satisfying 
1 6∈ K,

U ∧ V ∈ K ⇐⇒ U ∈ K or V ∈ K,∨
Ui ∈ K ⇐⇒ ∀i : Ui ∈ K.

3. proper prime elements P ∈ O(X).

and this bijection is given by the following formulas:

P =
∨
K, K =↓ P, K = ker(p−1).

For a topological space S, each of its points have a evident point of the corresponding locale given in
the following (equivalent) ways:

� As a frame morphism ps : 1→ Loc(S) defined by

(ps)
−1 : O(S)→ {0, 1} : U 7→

{
1, if s ∈ U
0, else

� As the proper prime element P := S r ¯{s}

� As the subset K := {U ∈ O(S)|s 6∈ U}

A sober topological space is where the points can be recovered from the locale as follows:
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Definition 7. A topological space S is sober if

S → Pt(Loc(S)) : s 7→ ps, (3)

is a bijection.

Proposition 4. A topological space is sober if and only if for each P ∈ O(S) r {S} such that

∀U, V ∈ O(S) : U ∩ V ⊆ P =⇒ U ⊆ P or V ⊆ P, (4)

there exist a unique s ∈ S such that P = S r ¯{s}.

Proof. Notice that (4) means that P is prime (actually proper prime since P 6= S). And since there is a
bijection between the proper prime elements and the points, being proper is equivalent to saying that each
proper prime element is associated to a unique point in S. But the proper prime elements associated a
point is of the form S r ¯{s} for some s ∈ S.

Proposition 5. A topological space is sober if and only if every nonempty irreducible closed set is the
closure of a unique point.

Proof. This is just translation of the previous characterisation into closed sets since if F ⊆ S is closed,
P := SrF is open (and F 6= ∅ ⇐⇒ P 6= S), (4) is then equivalent to saying (using that U ⊆ SrF ⇐⇒
F ⊆ S r U):

∀U, V ∈ O(S) : F ⊆ S r (U ∩ V ) = (S r U) ∪ (S r V ) =⇒ F ⊆ S r U or F ⊆ S r V.

And then using that U is open if and only if S r U is closed and using that a subset is irreducible if it is
a irreducible space w.r.t. the subspace topology, we get precisely that S r F satisfies (4) if and only if F
is irreducible.

3.1.1 Sobriety and separation

Proposition 6. Every hausdorff space is sober.

Proof. Let S be a Hausdorff topological space and assume F ⊆ S is a non-empty, closed and irreducible
set with x 6= y ∈ F . By being T2, there exists disjoint open neighbourhoods Ux and Uy of x resp. y. Since
they are disjoint, F = (F r Ux) ∪ (F r Uy). Since Ux and Uy are open in S, F r Ux = F r (F ∩ Ux) is
closed in F . This contradicts the irreducibility of F . So every non-empty, closed and irreducible set is a
singleton (and so is the closure of its unique point).

Proposition 7. Every sober space is T0.

Proof. Let S be sober and consider x 6= y ∈ S. Since S is sober, we have that s 7→ S r ¯{s} is injective.
Thus ¯{x} 6= ¯{y}, so (without loss of generality), there exists s ∈ ¯{x} r ¯{y}. Since s 6∈ ¯{y}, there exists
some open neighbourhood U of s such that y 6∈ U , but since s ∈ ¯{x} and s ∈ U , x ∈ U .

So we have the following diagram:

T2

T1 Sober

T0

The following examples show that being sober does not imply T1 (and vice versa):
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Example 5. Consider the Sierpinski space, i.e. S := {0, 1} is equipped with the topology {∅, {1}, {0, 1}}.
Since {0} is not open, it is not T1. But it is sober, indeed:
Any frame morphism p : O(S) → {0, 1} must satisfy p(∅) = 0, p(S) = 1. So p is defined by saying what
p({0}) and p({1}) are. But we also need:

1 = p({0, 1}) = p({0}) ∨ p({1})
0 = p(∅) = p({0}) ∧ p({1})

So p({0}) 6= p({1}), thus there are only 2 choices and if we choose p({0}) = 0 (so p({1}) = 1) we get p1
and if we choose p({0}) = 1 we get p0. So the assignment S → Pt(S) : s 7→ ps is indeed a bijection.

Example 6. Since any finite space which is T1 is discrete, it is sober (as such spaces are Hausdorff). So
we have to look at infinite spaces. Consider an infinite set S with the cofinite topology, i.e. U ⊆ S is open
if and only if S r U is finite. Since F ⊆ S is closed if and only if F is finite (or F = S), all points are
closed, i.e. it is T1.
This space is not sober since S itself is irreducible (since S is infinite and the only infinite closed set is S
itself) but points are closed so S is not the closure of a point.

3.2 From Locales to Topological spaces

Let X be a locale. For U ∈ O(X), set

pt(U) :=
{
p ∈ Pt(X)|p−1(U) = 1

}
.

Lemma 4. The set {pt(U)|U ∈ O(X)} forms a topology on Pt(X).

Proof. Let 1X (resp. 0X) be the top (resp. bottom) element of O(X). Since p−1 is a frame morphism (for
p ∈ Pt(X)), p−1(1X) = 1 and p−1(0X) = 0, so Pt(X) = pt(1X), ∅ = pt(0X). Thus the whole -and empty
set are open.
That the intersection of opens is again open follows because pt(U ∧ V ) = pt(U) ∩ pt(V ), indeed:

p ∈ pt(U ∧ V ) ⇐⇒ p−1(U ∧ V ) = 1

⇐⇒ p−1(U) ∧ p−1(V ) = 1

⇐⇒ p−1(U) = 1 = p−1(V )

⇐⇒ p ∈ pt(U) ∩ pt(V )

That the (arbitrary) intersection of opens is open follows because pt(
∨
i Ui) =

⋃
i pt(Ui), indeed:

p ∈ pt(
∨
i

Ui) ⇐⇒ p−1(
∨
i

Ui) = 1

⇐⇒
∨
p−1(Ui) = 1

⇐⇒ ∃i : p ∈ pt(Ui)
⇐⇒ p ∈

⋃
i

pt(Ui)

Proposition 8. Let f ∈ Locale(X,Y ). The map

Pt(f) : Pt(X)→ Pt(Y ) : p 7→ f ◦ p,

is continuous for the above topology.
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Proof. That Pt(f) is continuous follows because Pt(f)−1(pt(V )) = pt(f−1(V )) (for V ∈ O(Y )), indeed:

p ∈ Pt(f)−1(pt(V )) ⇐⇒ f ◦ p = Pt(f)(p) ∈ pt(V )

⇐⇒ p−1(f−1(V )) = (f ◦ p)−1(V ) = 1

⇐⇒ p ∈ pt(f−1(V )

Since Pt(IdX)(p) = p, P t(g ◦ f)(p) = g ◦ f ◦ p = Pt(g)(Pt(f)(p)), we get a (covariant) functor

Pt : Locale→ Top.

Proposition 9. The functor Pt is the right adjoint of Loc.

Proof. We have to define isomorphisms

θ = θS,X : Top(S, P t(X))→ Locale(Loc(S), X)

which are natural in both S and X. Let g ∈ Top(S, P t(X)). Define θ(g) = fg : Loc(S)→ X as

f−1g : O(X)→ S : V 7→ g−1(pt(V )) =
{
s ∈ S|g(s)−1(V ) = 1

}
.

Since V 7→ pt(V ) preserves finite infima and arbitrary suprema (since they form a topology) and g−1 is
also a frame morphism (since g is continuous), f−1g is a frame morphism, thus fg ∈ Locale(X,Loc(S)).
Let f ∈ Locale(X,Loc(S)). For s ∈ S, define gf (s) : 1→ X ∈ Pt(X) as

gf (s)−1(V ) =

{
1, if s ∈ f−1(V )

0, else

for V ∈ O(X). Define
θ−1S,X(f) = gf : S → Pt(X) : s 7→ gf (s).

Since
g−1f (pt(V )) =

{
s ∈ S|g(s)−1(V ) = 1

}
= f−1(V ),

and f is continuous, we have that gf is continuous, i.e. gf ∈ Top(S, P t(X)).
That f 7→ gf , g 7→ fg gives a bijection Top(S, P t(X))↔ Locale(Loc(S), X) follows from:

gfg(s)−1(V ) = 1 ⇐⇒ s ∈ f−1g (V ) ⇐⇒ g(s)−1(V ) = 1,

f−1gf (V ) =
{
s ∈ S|gf (s)−1(V ) = 1

}
=
{
s ∈ S|s ∈ f−1(V )

}
= f−1(V ).

It remains to show the naturality. We first show that θS,X is natural in S. Consider φ ∈ Top(S1, S2),
we have to show that the following diagram commutes:

Top(S2, P t(X)) Locale(Loc(S2), X)

Top(S1, P t(X)) Locale(Loc(S1), X)

−◦φ

θS2,X

−◦Loc(φ)
θS1,X

The path below is defined as (more precisely: the corresponding frame morphism):

θS,X(f ◦ φ)−1 : O(X)→ O(S1) : V 7→
{
s ∈ S1|(f ◦ φ)(s)−1(V ) = 1

}
.

The path above is given by

(θS2,X(f) ◦ Loc(φ))−1 = φ−1 ◦ θS2,X(f)−1 : O(X)→ O(S1) :

V 7→ φ−1(θS2,X(f)−1(V ))
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And we have

φ−1(θS2,X(f)−1(V )) = φ−1
({
s2 ∈ S2|f(s2)

−1(V ) = 1
})

=
{
s1 ∈ S1|f(φ(s1))

−1(V ) = 1
}
.

So we indeed have that the diagram commutes.
To show that θS,X is natural in X, we have to show that the following diagram commutes for φ ∈
Locale(X1, X2):

Top(S, P t(X1)) Locale(Loc(S), X1)

Top(S, P t(X2)) Locale(Loc(S), X2)

Pt(φ)◦−

θS,X1

φ◦−
θS,X2

The path above is given by:

(φ ◦ θS,X1(f))−1 = θS,X1(f)−1 ◦ φ−1 : O(X2)→ O(S) :

V 7→ θS,X1(f)−1(φ−1(V )) =
{
s ∈ S|f(s)−1(φ−1(V )) = 1

}
.

The path below is given by:

θS,X2(Pt(φ) ◦ f)−1 : O(X2)→ O(S) :

V 7→
{
s ∈ S|(Pt(φ) ◦ f)(s)−1(V ) = 1

}
And we have:

(Pt(φ) ◦ f)(s)−1(V ) = (φ ◦ f−1(s))−1(V ) = f(s)−1(φ−1(V )).

We now calculate the unit η and counit ε of Loc a Pt. Denote by

θ : Top(S, P t(X))→ Locale(Loc(S), X),

the natural isomorphism given in the previous proposition. The unit η : IdLocale =⇒ Pt ◦Loc and counit
ε : Loc ◦ Pt =⇒ IdTop are given by

ηS = θ−1(IdLoc(S)), εX = θ(IdPt(X)).

For the counit we have (by definition of θ):

ε−1X (V ) =
{
p ∈ Pt(X)|Id(p)−1(V ) = 1

}
= Pt(V ), V ∈ O(X).

The unit is given by a continuous function S → Pt(Loc(S)). Fix s ∈ S, then ηS(s) : 1 → Loc(S) which
corresponds with the frame morphism

ηS(s)−1 : O(S)→ {0, 1} : V 7→

{
1, if s ∈ Id−1LocS(V ) = V

0, else

So we get that the unit is precisely given by (3).

Proposition 10. Let S ∈ Top. The following are equivalent:

1. S is sober,

2. the unit η : S → Pt(Loc(S)) is a homeomorphism,

3. there is a homeomorphism S ∼= Pt(X) for some locale X.

10



Proof. 1 =⇒ 2: We know that η is continuous so we only have to show that η is open as η is a bijection
by being sober. Let U ⊆ S be open, thus

η(s) ∈ pt(U) ⇐⇒ η(s)−1(U) = 1 ⇐⇒ s ∈ U.

Since η is a bijection, we have s ∈ U ⇐⇒ η(s) ∈ η(U), thus η(U) = pt(U), which shows that η is an open
map.
2 =⇒ 3 is immediate by taking X = Loc(S).
3 =⇒ 1: Every open subset in Pt(X) is the form pt(U) with U ⊆ X open. Take P ∈ O(X) and assume
that pt(P ) is proper prime.
We have to show that we can write pt(P ) = pt(X) r ¯{φ} for a unique point φ ∈ Pt(X). That pt(P ) is
written that way, means precisely:

∀V ⊆ X : pt(V ) ⊆ pt(P ) ⇐⇒ φ 6∈ pt(V ) ⇐⇒ φ−1(V ) = 0.

This defines φ−1 : O(X) → {0, 1} uniquely. It remains to show that this is a frame morphism. That φ−1

preserves the top element follows from:

pt(P ) 6= Pt(X) = pt(1X) =⇒ pt(1X) 6⊆ pt(P ) =⇒ φ−1(1X) = 1.

That it preserves infima, follows from:

φ−1(U ∧ V ) = 0 ⇐⇒ pt(U ∧ V ) ⊆ pt(P )

⇐⇒ pt(U) ∩ pt(V ) ⊆ pt(P )

⇐⇒ pt(U) ⊆ pt(P ) or pt(V ) ⊆ pt(P ), since P prime

⇐⇒ φ−1(U) = 0 or φ−1(V ) = 0

⇐⇒ φ−1(U) ∧ φ−1(V ) = 0.

That is preserves suprema, follows from:∨
φ−1(Ui) = 0 ⇐⇒ ∀i : φ−1(Ui) = 0

⇐⇒ ∀i : pt(Ui) ⊆ pt(P )

⇐⇒
⋃
pt(Ui) ⊆ pt(P )

⇐⇒ pt(
∨
Ui) ⊆ pt(P )

⇐⇒ φ−1(
∨
Ui) = 0.

Definition 8. A locale X has enough points if for all U, V ∈ O(X):

pt(U) = pt(V ) =⇒ U = V.

The following example shows that not all locales have enough points:

Example 7. Let B be a complete boolean algebra. A nonzero element a ∈ B is called an atom if its
downset is trivial, i.e.

∀b ∈ B : b ≤ a =⇒ b ∈ {0, a}.

There is a bijection between the frame morphisms B→ {0, 1} and the atoms of B.

Proof. For b ∈ Atoms(B), define

fb : B→ 2 : a 7→

{
1, if a ≤ ¬b
0, else

11



So this is the morphism/function associated to K :=↓ {¬b} in the notation of (2). To show that fb is a
frame morphism, it has to satisfy (2). Clearly we have 1B 6∈ K since b 6= 0. The condition

x ∧ y ∈ K ⇐⇒ (x ∈ K or y ∈ K)

is equivalent to
x ∧ y ≤ ¬b ⇐⇒ (x ≤ ¬b or y ≤ ¬b) . (5)

First notice that if b is an atom, then

b ≤ p ∨ q =⇒ (b ≤ p or b ≤ q) (6)

Indeed: We have {b ∧ p, b ∧ q} ⊆ {0, b} (since b is an atom), but we also have

b = b ∧ (p ∨ q) = (b ∧ p) ∨ (b ∧ q).

So if both b∧p and b∧ q would be 0, we would have b = 0 which is not possible so we indeed have b∧p = b
or b ∧ q = b which means precisely b ≤ p or b ≤ q.
To show equation (5), we clearly have the implication ⇐= because x ∧ y ≤ x ≤ ¬b, so it remains to show
=⇒. This follows from equation (6):

fb(x ∧ y) = 0 ⇐⇒ x ∧ y ≤ ¬b
⇐⇒ b ≤ ¬(x ∧ y) = ¬x ∨ ¬y
=⇒ b ≤ ¬x or b ≤ ¬y
⇐⇒ x ≤ ¬b or y ≤ ¬b
⇐⇒ fb(x) = 0 or fb(y) = 0

The last condition to be checked (in order that fb is a frame morphism) is∨
xi ∈ K ⇐⇒ ∀i : xi ∈ K,

which is equivalent to ∨
xi ≤ ¬b ⇐⇒ ∀i : xi ≤ ¬b,

which clearly holds, so fb is indeed a frame morphism.
That the assignment b 7→ fb is injective follows from:

fa = fb =⇒ ∀x ∈ B : fa(x) = 1 ⇐⇒ fb(x) = 1

=⇒ ∀x ∈ B : x ≤ ¬a ⇐⇒ x ≤ ¬b
=⇒ a ≤ b and b ≤ a, by x = ¬b, x = ¬a
=⇒ a = b

That the assignment is surjective, let f ∈ Frm(B,2). Define K := f−1({0}) and b := ¬
∨
K. We claim

that f = fb, indeed:

fb(a) = 0 ⇐⇒ a ≤ ¬b =
∨
K =

∨
f−1(0) ⇐⇒ f(a) = 0.

So it remains to show that b is an atom. Assume 0 < x ≤ b. Thus

x ∨ (¬x ∧ b) = (x ∨ ¬x) ∧ (x ∨ b) = b.

So
1 = f(b) = f(x) ∨ f(¬x ∧ b).

So f(x) = 1 or f(¬x ∧ b) = 1. If ¬x ∧ b ≥ b, then

x ≤ b ≤ b ∧ ¬x ≤ ¬x,

which is a contradiction (since x > 0), so f(x) = 1, i.e x ≥ b. Thus b = x, so b is indeed an atom.

12



So if B is a complete boolean algebra, it has no points if it is atomless.
Let M be consists of the measurable subsets of [0, 1]. Let I be the ideal generated by those Borel sets with
measure 0. Then is M/I a complete boolean algebra and it has no atoms since no set has measure 0. This
then gives an example of a locale with no points.

Proposition 11. Let X ∈ Locale. The following are equivalent:

1. X has enough points,

2. the counit ε : Loc(Pt(X))→ X is an isomorphism (of locales)

3. there is an isomorphism X ∼= Loc(S) for some topological space S.

Proof. 1 =⇒ 2: (2) is equivalent with saying that ε−1 is an isomorphism of frames, e.g. we can show
that ε−1 is injective and surjective. Since ε−1(V ) = pt(V ) and each open in Pt(X) is of the form pt(V ) for
some V ∈ O(X) it is surjective. And that it is injective means precisely that X has enough points, indeed:

pt(V ) = ε−1(V ) = ε−1(U) = pt(U) =⇒ U = V.

2 =⇒ 3: Immediate by S := Pt(X).
3 =⇒ 1: So we have to show that Loc(S) has enough points for all topological spaces S. Assume
U 6= V ∈ O(S), without loss of generality, let s ∈ U r V . Consider again ps : 1→ Loc(S), i.e.

p−1s : O(S)→ {0, 1} : W 7→

{
1, if s ∈W
0, else

So p−1s (U) = 1 and p−1s (V ) = 0, so by definition of pt(U) (resp. pt(V )) we have ps ∈ pt(U) (resp.
ps 6∈ pt(V )) which shows the claim.

Corollary 2. The adjunction Loc a Pt restricts to an equivalence of categories between the (full) subcat-
egories of locales with enough points and sober topological spaces.

Remark 2. In the introduction, we have discussed that Top→ Frm : S 7→ O(S) is actually a representable
functor with representing object the Sierpinski space 2. Remarkably, Pt : Frm→ Top : F 7→ Pt(O−1(F ))
is also representable with the same representing object. We now describe these claims in more detail:
Consider S ∈ Top and let the set 2 have the Sierpinski topology with 1 as open point. Recall that the
bijection from O(S) to Top(S,2) is given by

O(S)→ Top(S,2) : U 7→ fU ,

with

fU : S → 2 : s 7→

{
1, if s ∈ U
0, else

Let 2 have the evident frame structure, then Top(S,2) has also a frame structure (given pointwise) and
this frame structure coincides with the structure on O(S) because:

fU ≤ fV ⇐⇒ ∀x ∈ S : fU (s) ≤ fV (s) ⇐⇒ [∀s ∈ S : s ∈ U =⇒ s ∈ V ] ⇐⇒ U ⊆ V.

Thus we have O(S) ∼=Frm Top(S,2). Let f ∈ Top(S, T ). So we have

Top(T,2)
Top(f,2)−−−−−→ Top(S,2) : fU 7→ fU ◦ f.

Since

fU ◦ f : T → 2 : t 7→

{
1, if f(t) ∈ U
0, else

13



we have that Top(f,2) represents f−1, i.e.

O(f) = Top(f,2).

Thus we indeed have that O(−) is representable by Top(−,2).
Now consider X ∈ Frm. We have Pt(X) = Frm(X,2) (notice that here we actually used Pt(O−1(X)) and
the anti-equivalence of frames and locales). Consider again on 2 the sierpinski topology. On Frm(X,2),
we place the compact open topology (we put on X the discrete topology), that is:
The subbase on Frm(X,2) consists of the open sets

N(C,U) := {f ∈ Frm(X,2)|f(C) ⊆ U} , C ⊆ X compact, U ∈ O(2).

So

N(C, {0, 1}) = Frm(X, 2)

N(C, ∅) =

{
∅, if C 6= ∅
Frm(X, 2), if C = ∅

N(C, {1}) =
⋂
c∈C

Pt(c)

So N(C, {0, 1}) and N(C, ∅) are open in Pt(X) and since C is finite (as it is compact in a discrete space),
N(C, {1}) is also open in Pt(X). Thus the compact open topology is contained in Pt(X). Since for each
U ∈ O(X), {U} is compact in X, we have Pt(U) = N({U}, {1}) which shows that the topologies coincides
and thus Pt(X) =Top Frm(X,2).
For f ∈ Frm(X,Y ), we clearly have Pt(f) = Frm(f,2) since Pt(f) is also just composition. So we also
have Pt(−) = Frm(−,2).
As a final remark, we notice the importance of 2 as it is the representable object for both Loc and Pt, where
in both cases we have considered this set as a frame and as a topological space (with the Sierpinski-topology).
Objects which give rise to an adjunction in this way are sometimes called schizophrenic.

3.3 Embeddings and surjections of Locales

Lemma 5. Let f ∈ Top(T, S) and f−1 ∈ Frm(O(S),O(T )) the corresponding frame morphism.

� If f is surjective, then is f−1 injective and the converse hold if S is T1.

� If f is injective, then is f−1 surjective and the converse hold if T is T0.

Proof. If f is surjective, then for each U ∈ O(T ), ff−1(U) = U , so if f−1(U) = f−1(V ):

U = ff−1(U) = ff−1(V ) = V,

which shows that f−1 is injective.
Assume f−1 is injective and let s ∈ S. If S is T1, then is Sr{s} open. Since f−1 is injective, f−1(Sr{s}) 6=
f−1(S) = T from which it follows that there is some t ∈ T with f(t) = s which shows that f is surjective
when S is T1.
Assume f : T → S is injective, thus T is a subspace of S (considered with the subspace topology). So
without loss of generality, T ⊆ S and O(T ) = {U ∧ T |U ∈ O(S)} and f is the inclusion of T ⊆ S and so
f−1(U) = U ∩T which show that f−1 is surjective since each open in T is of the form U ∩T with U ∈ O(S).
Assume f−1 is surjective and let t 6= t̃. If T is T0, there exists an open U ∈ O(T ) with t ∈ U and t̃ 6∈ U .
Since f−1 is surjective, there is some V ∈ O(S) with f−1(V ) = U , so f(t) ∈ V and f(t̃) 6∈ V , so we
necessarily have f(t) 6= f(t̃) which shows that f is injective if T is T0.

As motivated by the previous lemma, we define:

Definition 9. A morphism f ∈ Locale(T, S) of locales is an embedding (resp. a surjection) if
f−1 : O(S)→ O(T ) is surjective (resp. injective).
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So the lemma means precisely:

Corollary 3. Let f ∈ Top(T, S). Then

� If S is T1, f is surjective if and only if Loc(f) is a surjection.

� If T is T0, f is injective if and only if Loc(f) is an embedding.

Recall that each frame morphism (considered as a morphism of posets) has a right adjoint (1).

Lemma 6. Let f ∈ Locale(Y,X). Let f? : O(Y )→ O(X) be the right adjoint (of posets) of f−1 : O(X)→
O(Y ). Then

1. ∀U ∈ O(X) : U ≤ f?f−1U ,

2. ∀V ∈ O(Y ) : f−1f?V ≤ V ,

3. f−1f?f
−1 = f−1,

4. f?f
−1f? = f?.

Proof. The first 2 properties follows by the existence of the unit and counit of the adjunction, more precisely
it follows from:

O(X)(U, f?f
−1U) ∼= O(X)(f−1U, f−1U), O(Y )(f−1f?V, V ) ∼= O(Y )(f?V, f?V ).

The other 2 properties are visualized by the triangular identities of the adjunction in the following way:
The triangular identities tells us that the following diagrams commute:

f−1

f−1f?f
−1 f−1

η Id

εf−1

,

f? f?f
−1f?

f?

ηf?

Id
f?ε

So the left diagram tells us that for each U ∈ O(X) there are frame morphisms

f−1(U)
ηU−−→ f−1f?f

−1(U), f−1f?f
−1(U)

εf−1(U)−−−−−→ f−1(U)

and by definition of a poset category this means precisely that

f−1f?f
−1(U) ≤ f−1(U), f−1(U) ≤ f−1f?f−1(U),

so we conclude f−1 = f−1f?f
−1 which shows (3). In the exact same way, (4) follows from the right

diagram.

An immediate consequence of the lemma is:

Proposition 12. Let f ∈ Locale(Y,X). The following are equivalent:

1. f is a surjection.

2. f?f
−1 = Id : O(X)→ O(X).

3. f? : O(Y )→ O(X) is a surjection of posets.

And dually, the following are equivalent:

1. f is an embedding.

2. f−1f? = Id : O(Y )→ O(Y ).

3. f? : O(Y )→ O(X) is injective.
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Proof. From f−1f?f
−1U = f−1U it follows that if f−1 is injective, then is f ? f−1 = IdO(X) (so (1) =⇒

(2)).
If (2) holds, i.e. U = f?f

−1U , we immediately have that f? is surjective (so (2) implies (3)).
Assume f−1(U1) = f−1(U2), if f? is surjective, we have Ui = f?Vi for some Vi ∈ O(Y ). Injectivity of f−1

then follows from the triangular identity:

U1 = f?V1 = f?f
−1f?V1 = f?f

−1f?V2 = f?V2 = U2.

3.3.1 Sublocales

Definition 10. Let X ∈ Locale. A nucleus on X is a function

j : O(X)→ O(X),

such that:

� U ≤ jU

� j2U = jU

� j(U ∧ V ) = jU ∧ jV

Proposition 13. If f ∈ Locale(Y,X) is an embedding, then is j := f? ◦ f−1 a nucleus on X. And O(Y )
is isomorphic to

{U ∈ O(X)|jU = U} .

Proof. We already know U ≤ f?f
−1U = jU , thus in particular jU ≤ j2U (since f?, f

−1 are morphisms
of posets and respect the ordering). We also claim that j2(U) ≤ j(U), indeed: Since every adjunction
induces a monad, its multiplication gives the desired inequality, more precisely: Since f? ` f−1, there is
some associated monad (j, ε, η) on O(X) where η : j2 → j is a natural transformation (the multiplication),
so for each U ∈ O(X) we have a morphism ηU : j2(U)→ j(U) which means j2(U) ≤ j(U). So we conclude
j = j2. The last property to check is that j preserves finite infima which follows since f? (as it is a right
adjoint) and f−1 (as it is a frame morphism) preserves finite infima. Thus j is indeed a nucleus on X.
Since f? is injective, we have

O(Y ) = f?(O(Y )) = {f?(U)|U ∈ O(Y )} .

Using the triangular identity we have f?U = f?f
−1f?U , but f? is injective, thus U = f−1f?U . From this

it follows that
O(Y ) ∼= {U ∈ O(X)|jU = U} .

Proposition 14. If j is a nucleus on X, the set of fixed points of j

F := {U ∈ O(X)|jU = U},

is a frame and j becomes a surjective frame morphism into this frame.

Proof. That F is closed under infima follows because j preserves infima and thus the infima in F is the
infima in O(X).

We claim that the suprema of a set {Uα} ⊆ F is j
(∨O(X)

α Uα

)
, indeed:

� Since Uα ≤
∨O(X)
α Uα, we have (since j is a nucleus) j(Uα) ≤ j

(∨O(X)
α Uα

)
.
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� Let V ∈ F such that Uα ≤ V (forall α), since V ∈ O(X), we have
∨O(X) Uα ≤ V which implies

(since j is a nucleus and V ∈ F )

j

O(X)∨
Uα

 ≤ j(V ) = V.

Since j preserves ≤, we clearly have that j(∅) (resp. j(X)) is the bottom (resp. top) element of F . So F
is indeed a frame and the image of j is indeed F because j2 = j which shows j(O(X)) ⊆ F and the other
inclusion is immediate since jU = U which shows that j is surjective onto F .

Definition 11. Let j be a nucleus on X. The locale corresponding to the frame of fixed points of j is
denoted by Xj, i.e.

O(Xj) := {U ∈ O(X)|jU = U}.

Locales of the form Xj are called sublocales of X.

The previous proposition becomes:

Corollary 4. Let Xj be a sublocale of X (as in the above definition). Then determines j an embedding of
locales i : Xj → X by i−1(U) := jU .

3.3.2 Factorizations in Locale

We are going going to show that each morphism of locales factorizes (uniquely) through a sublocale, but
we first need the following lemma:

Lemma 7. (”Factorization lemma”) Let f ∈ Locale(Y,X) and j a nucleus on X with the embedding
i : Xj → X. Then f factors (uniquely) through i if and only if f−1 ◦ j = f−1.

Proof. Assume f = i ◦ p for some p : Y → Xj . Since i−1 = j, we get

f−1(U) = p−1 ◦ j(U) = p−1 ◦ j2(U) = f−1 ◦ j(U).

Conversely assume f−1 ◦ j = f−1. Define

p−1 : O(Xj)→ O(Y ) : U 7→ f−1(U).

Since the infima in O(Xj) is the same as in O(X), p−1 preserves infima since f preserves infima, more
precisely:

p−1(U) ∧O(Y ) p
−1(V ) = f−1(U) ∧O(Y ) f

−1(V )

= f−1
(
U ∧O(X) V

)
= f−1

(
U ∧O(Xj) V

)
= p−1

(
U ∧O(Xj) V

)
.

Since the suprema in O(Xj) is computed as the suprema in O(X) followed by applying j and f−1◦j = f−1,
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p−1 preserves suprema, more precisely:

p−1

O(Xj)∨
i

Ui

 = p−1

j
O(X)∨

i

Ui


= f−1

j
O(X)∨

i

Ui


= f−1

O(X)∨
i

Ui


=

O(Y )∨
i

f−1 (Ui)

=

O(Y )∨
i

p−1 (Ui)

So p−1 is indeed a morphism of frames and thus defines a morphism of locales p : Y → Xj . That f = i ◦ p
follows from:

p−1i−1U = f−1jU = f−1U.

Since i−1 is a surjection, such a p is unique.

Theorem 1. (Factorization theorem, existence) Let f ∈ Locale(Y,X). There exists a nucleus j on
X such that f factors through the embedding i : Xj → X via a surjection p, i.e.

Y X

Xj

f

p
i

Proof. Let j := f?f
−1, by (proposition 13) we know this is a nucleus on X. From the triangular identity

of f−1 a f?, it follows from the previous lemma that there exists a factorization p of f through j, more
precisely it follows from:

f−1j = f−1f?f
−1 = f−1.

For p to be a surjection of locales, p−1 has to be injective which indeed is the case because if p−1U = p−1V ,
we have by definition f−1U = f−1V , thus f?f

−1U = f?f
−1V , but since U and V are in O(Xj), we have

f?f
−1U = U (resp. for V ) which shows U = V .

Corollary 5. Every embedding of locales is of the form Xj → X.

Proof. Let f : Y → X be an embedding. Factorize f as f = p ◦ i as above. Since f is an embedding, we
have that p is also an embedding, but since p is already a surjection, we have that p isomorphism.

Theorem 2. (Factorization theorem, uniqueness) Let f ∈ Locale(Y,X). Assume f has two factor-
izations:

A

Y X

B

up

q

f

v
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If v is an embedding and p a surjection, then there exists a unique g ∈ Locale(A,B) such that gp = q and
vg = u. If moreover u is also an embedding and q a surjection, this g is an isomorphism.

Proof. Using the corollary, we can assume that B = Xj and v−1 = j for some nucleus j on X.
Since f factors through v and v−1 = j, the factorization lemma tells us that f−1j = f−1, so (using f = up)
we have p−1u−1j = p−1u−1, but p−1 is injective, thus u−1j = u−1. So by applying the lemma again, there
exists some locale morphism g such that u = vg which shows the first part of the theorem.
If u is an embedding, then so is g (since u = vg) and if q is a surjection, then so is g (since q = gp) and
since a embedding which is a surjection is an isomorphism, the second part is proven.

3.3.3 Open sublocales

Let X ∈ Locale and U ∈ O(X). Then is

↓ U = {V ∈ O(X)|V ≤ U} ,

(clearly) a frame, so we get a corresponding locale U , i.e. O(U) =↓ U .
We also have an evident surjective frame morphism

O(X)
U∧−−−−→↓ U : V 7→ V ∧ U,

which corresponds with some embedding of locales

f : U ↪→ X,

i.e. f−1 = U ∧ −.
The right adjoint of f−1 is given by

f? :↓ U → O(X) : V 7→
∨{

W ∈ O(X)|W ∧ U = f−1W ≤ V
}
.

So f?(V ) = (U =⇒ V ). Since f is an embedding, we have that U ∼= Xj with j = f?f
−1 and

∀W ∈ O(X) : j(W ) = (U =⇒ (U ∧W ))

=
⋃
{V ∈ O(X)|V ∧ U ≤W}

=
⋃
{V ∈ O(X)|V ∧ U ≤W ∧ U}

= (U =⇒ W ) .

Definition 12. A sublocale Xj → X is open if there is some U ∈ O(X) such that j(−) = (U =⇒ −).

3.3.4 Closed sublocales

Let X ∈ Locale and U ∈ O(X). Then is

↑ U = {V ∈ O(X)|U ≤ V } ,

(clearly) a frame, so we get a corresponding locale X r U , i.e. O(X r U) =↑ U .
We also have an evident frame morphism

O(X)
U∨−−−−→↑ U : V 7→ V ∨ U,

which corresponds with some morphism of locales

g : X r U ↪→ X,

i.e. g−1 = U ∨ −.
The right adjoint of g−1 is given by

g? :↑ U → O(X) : V 7→
∨{

W ∈ O(X)|W ∨ U = g−1W ≤ V
}
.
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Since g is an embedding, we have that X r U ∼= Xj with j = g?g
−1 and

∀W ∈ O(X) : j(W ) = g?g
−1(W ) =

∨{
V ∈ O(X)|V ∨ U = g−1(V ) ≤ g−1(W ) = W ∨ U

}
.

We now claim that g?g
−1(W ) = W ∨U . We clearly have W ∨U ≤ g?g−1W and the other inequality follows

from V ≤ V ∨ U ≤W ∨ U .

Definition 13. A sublocale Xj → X is closed if there is some U ∈ O(X) such that j(−) = (U ∨ −).

3.3.5 Sublocales of locales with enough points

Let X ∈ Locale have enough points, i.e. X = Loc(T ) with T ∈ Top. If S ⊆ T is a subspace, then the
inclusion i : S ↪→ T induces an embedding Loc(i) : Loc(S)→ Loc(T ) (coming from Loc(i)−1 = i−1) which
makes Loc(S) into a sublocale of Loc(T ). But not every sublocale of Loc(T ) will be of the form Loc(S):

Proof. Let T be Hausdorff with no isolated points (so no singletons are open). Since O(T ) is a frame, it
is a Heyting algebra and thus we have the negation operator ¬. The double negation, that is ¬ ◦ lnot is a
nucleus on Loc(T ), so we have a sublocale Loc(T )¬¬ of Loc(T ). We now claim that this sublocale doesn’t
have any points which shows that Loc(T )¬¬ doesn’t have enough points. Let p : 1→ Loc(T )¬¬ be a point.
Denote by u : Loc(T )¬¬ → Loc(T ) be the embedding, so u−1(W ) = ¬¬W . Thus u◦p is a point of Loc(T ).
Since T is hausdorf, it is sober, thus that point is form

(up)−1 : O(T )→ {0, 1} : W 7→

{
1, if t ∈W
0, else

for a unique t ∈ T . Thus

0 = (up)−1(T r {t}) = p−1 ◦ u−1(T r {t}) = p−1(¬¬(T r {t})). (7)

But t is not isolated, thus

¬(T r {t}) = int(T r (T r {t})) = int({t}) = ∅.

Applying ¬ again we thus get ¬¬(T r {t}) = ¬(∅) = int(T r ∅) = T . Since t ∈ T , we thus have

p−1(¬¬(T r {t})) = p−1(T ) = 1,

which contradicts (7).

4 Localic topoi

Given a frame F , one can define a base for a grothendieck topology by

{Ui → U}i∈I covers U ⇐⇒
∨
i∈I

Ui = U.

So this induces a grothendieck topos Sh(F ):

Definition 14. A localic topos is a category equivalent to Sh(F ), or equivalently a category equivalent
to Sh(O(X)) where X is a locale. If X is a locale, we write Sh(X) := Sh(O(X)).

Let E and F be (elementary) topoi. Recall that a geometric morphism f : E → F is given by a pair of
functors

E F
f?

f?

such that f? is left adjoint to f? and f? is left exact (i.e. preserves finite limits). The category of
(elementary) topoi with the geometric morphisms as morphisms is denoted by ETopos and we denote by
Topos its full subcategory of grothendieck topoi.
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4.1 Subobjects in topoi

Lemma 8. Let E be a topos and A ∈ E an object. Then is SubE(A) a Heyting algebra. If moreover, E is
either complete of cocomplete, then it is a complete Heyting algebra or equivalently a frame.

Proof. Notice that a subobject is an equivalence of monomorphisms, but we will fix a representative. It is
a routine computation which will show that up to equivalence everything works well. The top element is
A itself (more precisely IdA). The bottom element is the initial sheaf 0.
Let S, T ∈ SubE(A). The infima is given by the pullback of S ↪→ A along T ↪→ A, i.e. the following
diagram is a pullback square:

S ∧ T T

S A

To construct the suprema, consider the coproduct S q T of S and T . In general, the natural morphism
S q T → A is not a monomorphism, so we take its image factorisation

S

S q T I A

T

The image factorisation always exists in a (elementary) topos1. The suprema of S and T is then given by
the monomorphism I → A. This construction given the structure of a lattice on Sub(A).
To show that it has the structure of a Heyting algebra, one uses the isomorphism SubE(A) ∼= SubE/A(1)
to assume without loss of generality that we can take A to be the initial object 1 in E . The exponential of
S ↪→ 1 with T ↪→ 1 is then given by the unique morphism ST ↪→ 1 where ST is the exponential given by
the cartesian closedness of E .
If E is cocomplete, all suprema exists by construction. If E is complete, it has all infima and we know that
a lattice has all infima if and only if it has all suprema.

Lemma 9. For X ∈ Locale, there is an isomorphism of frames O(X) ∼= SubSh(X)(1).

Proof. Since each representable functor is a sheaf for X and since O(X)(V,U) ∈ {∅, {?}}, we have that
O(X)(−, U) is a subsheaf of 1, so

y : O(X)→ SubSh(X)(1) : U 7→ O(X)(−, U),

is well-defined. It is an injective frame morphism since

U ≤ V ⇐⇒ O(X)(−, U) ⊆ O(X)(−, V ).

To show that it is surjective, let P be a subsheaf of 1. Let U :=
∨
{V ∈ O(X)|P (V ) = 1}. Since P is a

sheaf, P (U) = 1, so by functoriality of P , if V ≤ U , we have P (V ) = 1. Thus P (V ) = 1 if and only if
V ≤ U , which shows that P = O(X)(−, U).

1See for example chapter 4, section 6 in [1]
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4.2 Localic Giraud

In this subsection we characterize those grothendieck topoi which are localic using the theorem of Giraud.
In order to show this, we need the following lemma:

Lemma 10. Let (C, J) be a (small) site and denote by

a : Func(Cop,Set)→ ShJ(C),

the sheafification functor and by
y : C → Func(Cop,Set),

the yoneda embedding. The set {ay(C)|C ∈ C} generates ShJ(C).

Proof. Let F ∈ Shj(C) be a sheaf. Since each presheaf is a colimit of representable functors2, we can write
F ∼= colimC∈Dy(C) (for some D ⊆ C). Thus

F ∼= a(F ) ∼= a (colimC∈Dy(C)) ∼= colimC∈Day(C),

where the last equality holds since a preserves colimits (as it is a left adjoint). Since each sheaf is such a
colimit, the set {ay(C)|C ∈ C} indeed generates ShJ(C).

Theorem 3. (”Giraud’s theorem for localic topoi”) Let E be a grothendieck topos. The following are
equivalent:

1. E is localic.

2. There exists a site for E with a poset as underlying category.

3. E is generated by the subobjects of the terminal object 1.

Proof. Since a frame is a poset, (1) =⇒ (2) is clear. Assume (2), i.e. E = Sh(P, J) for some poset
category P and J a grothendieck topology on P. Since P is a poset category, each hom-set is either empty
or a singleton, thus all representable functors are subfunctors of the terminal presheaf 1, i.e. if we write

y : P→ Fun(Pop,Set) : p 7→ P(−, p)

for the yoneda embedding, the unique morphism y(p) → 1 (given by the componentwise inclusion) is a
monomorphism for each p ∈ P. Let

a : Fun(Pop,Set)→ Sh(P, J)

be the sheafification functor. Since a preserves limits, it preserves monomorphisms3 and the terminal
object, so ay(p) → 1 is also a monomorphism and thus ay(p) is a subobject of 1. Using the previous
lemma, we conclude (3).
Now assume (3). Recall that in the proof of the theorem of Giraud4, the site that is constructed has as its
underlying category the (small) category generated by the generators which by hypothesis is SubE(1). So
(as E is a Grothendieck topos) E ∼= ShJ(SubE(1)) for some grothendieck topology J . Since SubE(1) is a
frame, it corresponds with a locale and thus shows the claim.

2See for example Proposition I.5.1 in [1]
3a morphism f : A → B is mono if and only if its kernel pair is trivial, i.e. the pullback of A

f−→ B
f←− A is given by

(A, IdA, IdA)
4Giraud’s theorem gives a precise characterization of a category being a grothendieck topos in purely categorical properties.
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4.3 From topoi to locales: Localic reflection

In this (sub)section we show that X 7→ Sh(X), for X ∈ Locale, induces a fully faithfull functor from
Locale to Topos, which moreover has a left adjoint, called the localic reflection. These results are
slighty more general in the sense that this actually happens at a 2-categorical level. So before we start
proving these results, we first see how Locale and Topos become 2-categories:

� Let f ∈ Locale(X,Y ). Since f−1 : O(Y )→ O(X) can be considered as a functor (as posets can be
considered as categories), the set of locale morphisms Locale(X,Y ) can be given the structure of a
category by defining the morphisms between locales maps to be the natural transformations between
the corresponding frame morphisms.

� Let f, g ∈ Topos(E ,F). So this means that we have functors f? and g?. A 2-cell from f to g is then
given by a natural transformation f? → g?. Equivalently this is a natural transformation g? → f?.

Remark 3. To construct the 2-cells in Locale, we have used its correspondance with Frm which auto-
matically makes Frm into a 2-category and we have that Locale is the opposite 2-category of Frm in the
sense that the 1-cells are reversed but the 2-cells are the same.

Before continuing, we recall that given a site (C, J), a functor C → Set is continuous if send covering
sieves to epimorphic families.

Proposition 15. Let (C, J) be a finitely complete site and E be (small) cocomplete topos. There is an
equivalence of categories between geometric morphisms E → ShJ(C) and the category of continuous left
exact functors C → E (with natural transformations as morphisms).

Proof. This is corollary 4 of chapter 7 section 9 in [1].

Lemma 11. Let E be a cocomplete elementary topos and Y a locale. The continuous left exact functors
O(Y )→ E are precisely the frame morphisms O(Y )→ SubE(1).

Proof. Consider a left exact continuous functor F : O(Y ) → E . Since Y is the terminal object in O(Y )
and F is left exact, F (Y ) = 1E the terminal object in E . And since U ≤ Y for each U ∈ O(Y ), we have a
morphism F (U)→ F (Y ) = 1E . Since all morphisms in a poset category are monomorphisms and F is left
exact, F (U)→ 1E is a monomorphism. Thus we conclude that the image of F lies in SubE(1E).
Since SubE(1E) is also a complete Heyting algebra, left exactness of F means that F preserves finite infima
and the continuity of F means that F preserves (arbitrary) suprema. So these continuous left exact functors
are precisely the frame morphisms O(Y )→ SubE(1E).

By considering frames as (certain) functors, the frame morphisms form a category by considering
natural transformations. The lemma combined with proposition (15) then becomes:

Corollary 6. Let E be a cocomplete elementary topos and Y a locale. Then there is an equivalence of
categories

ETopos(E , Sh(Y ))→ Frm(O(Y ), SubE(1)).

Corollary 7. Let X,Y be locales. Then there is an equivalence of categories

Locale(X,Y )→ Topos(Sh(X), Sh(Y )).

Proof. Since SubSh(X)(1) ∼= O(X), this follows from the previous corollary since there is an isomorphism
of categories

Locale(X,Y ) ∼= Frm(O(Y ),O(X)).

So in particular, this makes the assignment X 7→ Sh(X) into a fully faithfull functor.
Since SubE(1) is a frame, it corresponds with a locale Loc(E), i.e. O(Loc(E)) = SubE(1). So corollary (6)
becomes:
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Theorem 4. (”Localic reflection of cocomplete elementary topoi”) Let E be a cocomplete topos and
Y a locale. There is an equivalence of categories

ETopos(E , Sh(Y ))→ Locale(Loc(E), Y ).

So if we restrict to the Grothendieck topoi, which makes the assignment E 7→ Loc(E) into a functor
Loc : Topos→ Locale, the theorem implies that we have an adjunction Loc a Sh.

4.4 Embeddings and surjections of localic topoi

In the previous section, we have seen that the morphisms between locales correspond with the geometric
morphisms between their corresponding topoi. In this (sub)section, we show that this correspondance
behaves well with respect to the embeddings and surjections.
Recall that a geometric morphism f is surjective if f? is faithful and f is an embedding if f? is fully
faithfull.

Lemma 12. Let f : E → F be an embedding. If {Gi}i∈I is a generating collection for F , then is {f?(Gi)}i∈I
a generating collection for E.

Proof. Assume α 6= β ∈ E(E1, E2). Since f is an embedding, f? is faithfull, thus f?(α) 6= f?(β). Since the
Gi form a generating set, there exists some u : Gi → f?(E1) such that f?(α) ◦ u 6= f?(β) ◦ u.
Since f? a f?, we have for the transpose û : f?(Gi) → E1 of u, that α ◦ û 6= β ◦ û. So the f?(Gi) form
indeed a generating set for E .

Corollary 8. Let f : E → F be an embedding. If F is localic, so is E.

Proof. By Giraud, SubF (1F ) forms a generating set of F . So by the lemma, {f?(S)|S ∈ SubF (1F )} is a
generating set of E . So by Giraud, it suffices to show that f?(S) is a subobject of 1E , this is indeed the
case because f? is exact.

To show that the surjections and embeddings of locales correspond with the surjections and embeddings
of their corresponding localic topoi, we need the following lemma

Lemma 13. Consider f ∈ Locale(X,Y ) and f̃ := Sh(f) ∈ Topos(Sh(X), Sh(Y )) the corresponding
geometric morphism. Identifying O(X) with SubSh(X)(1), we have:

f̃?|O(X) = f?, f̃?|O(Y ) = f−1.

Proof. Since each V ∈ O(Y ) is identified with O(Y )(−, V ), we conclude f̃?|O(X) = f? from:

f̃?(O(X)(−, U)) = O(X)(−, U) ◦ f−1 = O(X)(f−1(−), U) = O(Y )(−, f?(U)).

From f̃?|O(X) = f?, the second equality f̃?|O(Y ) = f−1, indeed: The left adjoint is unique up to natural

isomorphism, so we have for each V ∈ O(Y ) an isomorphism ηV : f̃?|O(Y )(V ) → f−1(V ). But these

isomorphisms live in O(X) (a thin category), thus f̃?|O(Y )(V ) = f−1(V ) which shows the claim.

Proposition 16. Let f ∈ Locale(X,Y ) and f̃ := Sh(f) ∈ Topos(Sh(X), Sh(Y )) the corresponding
geometric morphism. Then is f a surjection (resp. embedding) of locales if and only if f̃ is a surjection
(resp. an embedding) of topoi.

Proof. We first show⇐. First assume that f̃ is a surjection, then (by definition) is f̃? faithfull. In particular
we have that f̃? reflects isomorphisms (since we have topoi are balanced). So f−1 = f̃?|O(Y ) also reflects
isomorphisms. Now assume that f−1(U) = f−1(V ), so

f−1(U ∧ V ) = f−1(U) ∧ f−1(V ) = f−1(U).

Since U ∧ V ≤ U , we thus have that U ∧ V = U (since f−1 reflects isomorphisms), so by symmetry we
conclude U = U ∧ V = V .
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Now assume f̃ is an embedding, then (by definition) is f̃? fully faithfull. Since f̃? a f̃? and fully faith-
fullness, we have that the counit of this adjunction is an isomorphism, so by restricting to O(X), we have
isomorphisms U ∼= f−1f?U for all U ∈ O(X) which shows that f−1 is surjective, i.e. f is an embedding.
We now show ⇒: Every geometric morphism can be factored as a surjection followed by an embedding
(see for example theorem 6, section 4, chapter 7 in [1]). So we can write f̃ as follows:

Sh(X) Sh(Y )

E

f̃

g̃
ũ

Since Sh(Y ) is localic, so is E (by corollary 8), i.e. E = Sh(Z) for some locale Z. Since we have the
equivalence of categories Locale(X,Y ) ∼= Topos(Sh(X), Sh(Y )), there exists some u : Z → Y and
g : X → Z such that

f = u ◦ g, Sh(u) = ũ, Sh(g) = g̃.

From ⇐, we conclude that g is a surjection and u is an embedding of locales. From this it is a standard
argument that shows the claim, more precisely:
Since f = u ◦ g, we have that if f is a surjection (resp. an embedding), that u is a surjection (resp. g
an embedding) and thus u (resp. g) is an isomorphism. So we have that ũ = Sh(u) (resp. g̃ = Sh(g)) is
an isomorphism (since Sh is a functor) from which it follows that f is a surjection (resp. an embedding)
which concludes the proof of ⇒.

Corollary 9. Let X ∈ Locale. The sublocales of X correspond to the subtopoi of Sh(X).

Proof. By corollary (8), a subtopoi of Sh(X) is localic. So a subtopos is given by an embedding f̃ ∈
Topos(Sh(Y ), Sh(X)) which, by corollary (7) corresponds with a unique f ∈ Locale(Y,X). From the
previous proposition, f is also an embedding so each subtopoi comes from a unique sublocale.
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