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Abstract

In this project we study a certain kind of categories called topoi. A topos is a generalisation of
the category Set. The goal of this project is to show that a topos has a great amount of categorical
properties, more specifically that it is cartesian closed and that it is finitely cocomplete. But in order to
show the latter, we introduce monadic functors, as they create limits and show Beck’s theorem, which
give a criteria for when a functor is monadic, which allows us to prove that the power object functor is
monadic and hence create limits from which finite cocompleteness will follow.

1 Introduction

A topos is a generalisation of the category of sets like an abelian category is a generalisation of the category
of abelian groups or R-modules. The purpose of abelian categories is to do homological algebra, but in
topoi, the purpose is to interpret (propositional and predice) logic and so in particular interpret set theory.
In set theory, the fundamental notion is that of the membership relation. This relation (on a set X) is a
subset of X × PX. So to generalize this notion, we need the notions of subsets and powersets in general
categories (with sufficient limits), which will be called subobjects resp. powerobjects. In this section we
will generalize these notions to the level of category theory. But before introducing powerobjects, we need
the notion of a subobject classifier. This is a generalization of the set {0, 1}, with the purpose of classifying
subobjects. In Set, this set classifies subsets by the bijection P(X)→ Hom(X, {0, 1}) which send a subset
to its characteristic function.
We will see that a topos, just like Set, has a lot of (categorical) structure. It will have all finite limits and
colimits, but also exponentials (i.e. the functions between sets is again a set). A category in which such
exponentials always exists is called cartesian closed and so at the end of this section we will also introduce
this.

1.1 Subobjects

In category theory we are always interested in objects up to isomorphism. In Set, an isomorphism is a
bijection, so we can consider subsets A,B ⊆ C as the same if there exists a bijection between them. Since
a subset is defined element-wise, we can not really define the notion of a subset in a category, but a subset
can always be considered as the image of an injection into C:
Let C be a category and C ∈ C an object. If k ∈ HomC(A,C) and h ∈ HomC(B,C) are monomorphisms,
we say that k and h are equivalent if there is an isomorphism φ : A→ C in C such that h ◦ φ = k, i.e. the
following diagram is commutative:

A B

C

φ

k
h

If k is equivalent to h, we denote k ∼ h.
It is clear that ∼ forms an equivalence relation by definition of an isomorphism (since it has an inverse)
and that the composition of isomorphisms is again an isomorphism.

Definition 1. A subobject of an object C ∈ C is an equivalence class of monomorphisms ending in C.
The collection of subobjects of C is denoted by SubC(C).
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Proposition 1. Let C be a category, then SubC(C) has a partial ordering given as follows: Let [f ], [g] ∈
SubC(C) be subobjects with representatives f : A→ C and g : B → C. Define [f ] ≤ [g] if and only if there
exists a morphism h ∈ HomC(A,B) such that the following diagram is commutative:

A B

C

h

f
g

Proof. It is again clear that this indeed defines a partial ordering, we only check that it is well-defined, i.e.
the order is independant of the choice of representative. Assume f : A → C ∼ g : B → C (by φ : A → B
an isomorphism in C). If [f ] ≤ [h] (with h : D → C), then there exists a morphism ψ : A → D such that
the following diagram commutes:

A D

C

ψ

f
h

Since φ is invertible, we have f ◦ φ−1 = g, so the following diagram is commutative:

B A D

C

φ−1

g

ψ

f
h

This shows that [g] ≤ [h], so it is indeed well-defined.

Denote by Pos the category of poset categories with morphisms the functors between them. So by the
previous proposition we have that SubC is an object in Pos.

Proposition 2. Let C be a category and f ∈ HomC(A,C) a morphism. This induces a morphism in Pos
(i.e. a functor)

SubC(f) : SubC(C)→ SubC(A).

Proof. Let f ∈ HomC(A,C) a morphism and m : S → C a monomorphism. Consider the following
pullback square:

f?(S) S

A C

f?(m) m

f

Notice that f?(m) is a monomorphism (since m is mono and it is the pullback). We now claim that
Sub(f) : Sub(C) → Sub(A) : m 7→ f?(m) is a functor. Let [h], [k] ∈ SubC(C) with representatives
h : B1 → C, k : B2 → C. We have to show that if [h] ≤ [k], then [f?(h)] ≤ [f?(k)]. By definition we have
the following pullback squares:

f?(B1) B1

A C

f?(h) h

f

f?(B2) B2

A C

f?(k) k

f

Since [h] ≤ [k], there exists a morphism φ : B1 → B2 such that the following diagram is commutative:

B1 B2

C

φ

h
k
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Denote by ψ the morphism f?(B1)→ B1, then

k ◦ φ ◦ ψ = h ◦ ψ = f ◦ f?(h).

So the following diagram commutes:

f?(B1)

f?(B2) B2

A C

φ◦ψ

f?(h)

f?(k) k

f

So by the universal property of the pullback (which defines f?(k)), there exists a unique morphism

f?(B1)
µ−→ f?(B2) which completes the diagram, so in particular we have the following commuting di-

agram:

f?(B1) f?(B2)

A

µ

f?(h)
f?(k)

This shows that [f?(h)] ≤ [f?(k)] holds, so we are done.

Corollary 1. Let C be a category and f ∈ HomC(A,B). The assignments

C 7→ SubC(C)

f 7→ SubC(f)

induces a functor SubC : Cop → Pos.

Proof. We have to show that for each monomorphism m : S → C:

(IdC)?(m) = m

(g ◦ f)?(m) = f?(g?(m)) ∀f ∈ Hom(A,B), g ∈ Hom(B,C)

That the identity is preserved, consider the following pullback diagram:

(IdC)?(S) S

C C

(IdC)?(m) m

IdC

But the following diagram is also a pullback square:

S S

C C

IdC

m m

IdC

So by the universal property of the pullback (the pullback is unique up to isomorphism) there is a (unique)
isomorphism φ : (IdC)?(S)→ S such that the following diagram commutes:

(IdC)?(S) S

C

φ

(IdC)?(m)
m
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So [m] = [(IdC)?(m)].
We now show that the composition is preserved. Let f ∈ Hom(A,B), g ∈ Hom(B,C). So by definition of
f? and g? we have that the following diagram consists of pullbacks squares:

f?(g?(S)) g?(S) S

A B C

f?(g?(m)) g?(m) m

f g

Hence the full square is a pullback square. But by definition of (g ◦f)?, the following diagram is a pullback
square:

(g ◦ f)?(S) S

A C

(g◦f)?(m) m

g◦f

So by the uniqueness of the pullback, there exists an isomorphism

(g ◦ f)?(S)
φ−→ f?(g?(S))

such that the following diagram is commutative:

(g ◦ f)?(S) f?(g?(S))

A

φ

(g◦f)?(m)
f?(g?(m))

Thus [f?(g?(m))] = [(g ◦ f)?(m)].

Notice that in general one does not have that SubC(C) is a set, therefore we needed that the functor
SubC lands in Pos, but if it is indeed a set for all C ∈ C, we call C well-powered :

Definition 2. A category C is well-powered if for every object C ∈ C, SubC(C) is a set.

Corollary 2. If C is well-powered, then SubC induces a functor

SubC : Cop → Set.

1.2 Subobject classifier

A subset S ⊆ B is uniquely determined by its characteristic morphism:

φ : B → {0, 1} : x 7→

{
1, if x ∈ S
0, if x 6∈ S

So a 2-element set can classify subsets. A subobject classifier in a category is an object which also classify
subobjects:

Definition 3. Let C be a category with pullbacks and terminal object 1. A subobject classifier is an
object Ω ∈ C together with a morphism true : 1→ Ω such that for each monomorphism m ∈ HomC(S,B),
there is a unique morphism φ ∈ HomC(B,Ω) such that the following diagram is a pullback square:

S 1

B Ω

m true

φ

We call φ the characteristic morphism of m.
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Example 1. In C = Set, the subobject classifier Ω is a 2-element set with true : 1 → Ω any function (1
is a 1-element set in Set, so true is necessairy constant). Usually one chooses Ω = {0, 1} = {⊥,>} and
true ≡ 1 ≡ > since these represent the truth-values.

Proof. Define
Ω := {0, 1}, true : 1→ Ω : ? 7→ 1.

Let f : A→ B be an injective function. Define

φ : B → {0, 1} : b 7→

{
1, if f−1(b) 6= ∅
0, else

Since for each a ∈ A, a ∈ f−1(f(a)), we have φ ◦ f(a) = 1. This shows that the following diagram is
commutative:

A 1

B {0, 1}

f true

φ

We now show that this diagram is a pullback square. Let X be a set, g : X → B be a function such that
the following diagram commutes:

X

A 1

B {0, 1}

g

f true

φ

So for each x ∈ X, we have φ ◦ g(x) = 1. So by definition of φ we have f−1(g(x)) 6= ∅. So there exists
yx ∈ f−1(g(x)), but f is injective, so this yx is unique and we have f(yx) = g(x). So define

ψ : X → A : x 7→ yx.

This function satisfies f(ψ(x)) = f(yx) = g(x). So g factors indeed through f . We now show that ψ is
unique. Assume that κ : X → A satisfies g = f ◦ κ. So

f ◦ ψ = g = f ◦ κ.

But f is injective, i.e. a monomorphism. So ψ = κ.

Proposition 3. The subobject classifier of a category C (with pullbacks and terminal object) is unique up
to isomorphism.

Proof. Let 1
true1−−−→ Ω1 and

true2−−−→ Ω2 be subobject classifiers. Since 1 is terminal, every outgoing morphism
is mono, so 1 is a subobject of every object, in particular for Ω1 and Ω2, so by definition of a subobject
classifier there exists characteristic morphisms φ, ψ such that the following diagrams are pullbacks squares:

1 1

Ω1 Ω2

Id1

true1 true2

φ

1 1

Ω2 Ω1

Id1

true2 true1

ψ

So the following square is a pullback:

1 1

Ω1 Ω1

Id1

true1 true1

φ◦ψ
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But the following diagram is also a pullback square:

1 1

Ω1 Ω1

Id1

true1 true1
IdΩ1

But by definition of the subobject classifier, the characteristic morphism is unique, so φ ◦ψ = IdΩ1 . In the
same way we get ψ ◦ φ = IdΩ2 . Thus we get the desired isomorphism.

The following proposition shows that a subobject is uniquely defined by its characteristic morphism:

Proposition 4. Let C be a category with all pullbacks, a terminal object and a subobject classifier.
Monomorphisms k ∈ HomC(A,C) and h ∈ HomC(B,C) are equivalent if and only if they have the same
characteristic morphism.

Proof. If k and h are equivalent, there exists an isomorphism κ : A→ B such that k = h◦κ. Let φ : C → Ω
be the characteristic morphism of k. So the following diagram is a pullback square:

A 1

C Ω

k true

φ

Since k = h ◦ κ, the following diagram is commutative:

B A 1

C Ω

h

κ

k true

φ

We have to show that B is the pullback of C
φ−→ Ω

true←−− 1. Assume there exists morphisms !1 : Z → 1 and
f : Z → C such that the following diagram commutes:

Z

B 1

C Ω

!Z

f !B

h true

φ

Since we already know that A is the pullback, we have a unique morphism α : Z → A such that the
following diagram commutes:

Z

A 1

C Ω

!Zα

f !A

k true

φ

Since κ : B → A is an isomorphism (in C), κ−1 ◦ α is a morphism from Z to B. And by all the previous
commuting diagrams, we get that the following diagram is commutative:

So before we can conclude that B is indeed the pullback (and thus has characteristic morphism φ, we
must show that κ−1 ◦ α : Z → B is the unique morphism which makes the diagram commute. But if
g : Z → B is also a morphism which makes the diagram commute, we have that the following diagram
commutes:

But from the uniqueness of the universal property of A (as the pullback), we must therefore have
κ ◦ g = α, so g = κ−1 ◦ κ ◦ g = κ−1 ◦ α. So the morphism is indeed unique.
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For the converse: Let k and h have the same characteristic morphism φ, i.e. the following diagrams are
pullbacks squares:

A 1

C Ω

k true

φ

B 1

C Ω

h true

φ

But since the pullback is unique up to isomorphism, there exist an isomorphism κ : A → B such that
κ ◦ h = k. Since κ is an isomorphism, we therefore have that k and h are equivalent monomorphisms, so
they represent the same subobject.

Proposition 5. If C is a locally small category with pullbacks, a terminal object and a subobject classifier.
Then Ω ∈ C is a subobject classifier if and only if there is an isomorphism

θC : SubC(C)→ HomC(C,Ω),

natural in C ∈ C. In particular, SubC is representable.

Proof. Assume C has a subobject classifier Ω. By the previous proposition, the assignment which maps a
suboject S → X to its characteristic morphism φS : X → Ω is a bijection. So we have to show that for
each morphism f ∈ HomC(D,C) the following diagram commutes:

Sub(C) Hom(C,Ω)

Sub(D) Hom(D,Ω)

θC

f? −◦f
θD

i.e. for each monomorphism m : A→ C ∈ SubC(C), we need

θD ◦ f?(m) = θC(m) ◦ f.

We have that the following diagram is a pullbacksquare:

f?(A) A 1

D C Ω

f?(m) m true

f θC(m)

Indeed, the left square (resp. right) is the pullback by definition of f? (resp. θC(m)). But the characteristic
morphism of f?(m) is by definition θD(f?(m)), i.e. the following pullback diagram is a pullback square:

f?(A) 1

D Ω

f?(m) true

θD(f?(m))

So the subobject f?(m) : f?(A)→ D has characteristic morphisms θD(f?(m)) and θC(m) ◦ f , so they are
equal.
We now do the converse: Assume there exists an object Ω ∈ C such that

θC : SubC(C)→ HomC(C,Ω),

is natural for all C ∈ C and an isomorphism. We claim that Ω is a subobject classifier. Let m : S → X be
a subobject and let φ = θX(m). We have to construct a morphism true : 1 → Ω such that the following
diagram commutes (for all m):

S 1

X Ω

m true

φ
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The only morphism we know in Hom(Ω,Ω) is IdΩ, so define t : ω → Ω such that θΩ(t) = IdΩ (which is
possible since θΩ is a bijection). By the naturality of θ we have that the following diagram commutes:

Sub(Ω) Hom(Ω,Ω)

Sub(X) Hom(X,Ω)

θΩ

φ? −◦φ
θX

By applying this to t ∈ Sub(Ω), we get

φ = Id ◦ φ = θΩ(t) ◦ φ = θX ◦ φ?(t).

But by definition we have φ = θX(m), so by the bijectiveness of θX , we have φ?(t) = m. So by definition
of φ?, the following diagram is a pullback square:

φ?(ω) = S ω

X Ω

m=φ?(t) t

φ

So if we can show that ω is the terminal object and that φ is the unique morphism which makes this
diagram a pullback square, we have indeed that t : ω → Ω is the subobject classifier.
By taking S = X and m = IdX , we have a morphism α : X → ω such that the following diagram is a
pullback square:

X ω

X Ω

α

Id t

θX(Id)

Let β ∈ Hom(X,ω) be a morphism, we have to show that β = α.
By the naturality of θ and t ◦ β : X → ω, we have that the following diagram commutes:

Sub(Ω) Hom(Ω,Ω)

Sub(X) Hom(X,Ω)

θΩ

(t◦β)? −◦(t◦β)

θX

By applying this to IdΩ, we get t◦β = θX◦(t◦β)?(Id). By the same reasoning we have t◦α = θX◦(t◦α)?(Id).
But since the pullback over the identity is again the identity, we have (t ◦ α)?(Id) = Id = (t ◦ β)?(Id). So

t ◦ β = θX ◦ (t ◦ β)?(Id) = θX ◦ Id = θX ◦ (t ◦ α)?(Id) = t ◦ α.

But t is a monomorphism, so α = β. So ω is indeed the terminal object 1.
For the uniqueness of φ: Assume that the following diagrams are pullback squares:

S 1

X Ω

m t

φ

S 1

X Ω

m t

ψ

By definition we have defined that φ := θX(m) and since ψ ∈ Hom(X,Ω), there exists a subbobject
n : T → X ∈ Sub(X) such that ψ = θX(n). So we know (from the first part of the proof) that the
following diagram is a pullback square:

T 1

X Ω

n t

ψ
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So by uniqueness of the pullback, there exists an isomorphism κ : S → T such that the following diagram
is commutative:

S T

X

κ

m n

So by definition of a subobject we have that m : S → X and n : T → X represent the same subobject, so
φ = θX(m) = θX(n) = ψ.

Corollary 3. If C is a locally small with finite limits and a subobject classifier, then is C well-powered.

Proof. Since C is locally small, HomC(C,Ω) is a set. But there is a bijection SubC(C)→ HomC(C,Ω) for
all C ∈ C, so SubC(C) is in bijection with a set and is therefore a set itself.

1.3 Powerobjects

In order to set theory in a topos, one also need the notion of a powerobject, a categorification of the notion
of the powerset. Since a subset (of B) is usually defined in terms of a membership relation:

∈B: B × P(B)→ {0, 1} : (b, A) 7→

{
1, if b ∈ A
0, else

Definition 4. Let C be a category with pullbacks, a terminal object and a subobject classifier Ω. The
powerobject of B ∈ C is an object PB together with a morphism ∈B: B × PB → Ω such that for each
morphism f ∈ HomC(B×A,Ω), there exists a unique morphism g ∈ HomC(A,PB) such that the following
diagram commutes:

B ×A B × PB

Ω

1×g

f ∈B

Remark 1. In the previous definition, the existence of products is used, but if a category has a terminal
object and pullbacks, then A×B is the pullback of A→ 1← B.

Proof. Denote by A ×1 B the pullback of A → 1 ← B, so there exists morphisms πA : A ×1 B → A and
πB : A×1 B → B such that the following diagram is a pullback square:

A×1 B B

A 1

πB

πA

Let Z ∈ C be an object and f ∈ HomC(Z,A), g ∈ HomC(Z,B) morphisms. Since 1 is terminal, the
following diagram is commutative:

Z B

A 1

g

f

Therefore, since A ×1 B is a pullback, so there exists a unique morphism Z → B ×1 A such that the
following diagram is commutative:
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Z

A×1 B

A B

f

g

πA

πB

So A×1 B is the product of A and B in C.

Example 2. In C = Set, the powerobject of a set B is the powerset P(B) of B with ∈B the membership
relation of B.

Proof. Let f ∈ HomSet(B × A, {0, 1}). We have to show that there exists a unique functor g : A → PB
such that f =∈B ◦(IdB × g). Define

g : A→ PB : a 7→ {b ∈ B|f(b, a) = 1} .

So for each (b, a) ∈ B ×A:

∈B (IdB × g)(b, a) = ∈B (b× {x ∈ B|f(x, a) = 1})

=

{
1, f(b, a) = 1

0, f(b, a) = 0

= f(b, a)

We now show that this g is unique. Assume h : A→ PB satisfies

∈B ◦(IdB × h) = f.

So by definition of ∈B, we have (for each b ∈ B, a ∈ A):

f(b, a) =

{
1, if b ∈ g(a)

0, else

So f(b, a) = 1 ⇐⇒ b ∈ g(a). So
g(a) = {b ∈ B|f(b, a) = 1} .

Proposition 6. Let C be a category with pullbacks, a terminal object 1, powerobjects and a subobject
classifier. The powerobject of 1 is the subobject classifier.

Proof. Denote by p the natural isomorphism from 1×− to IdC . We will show this proposition by showing
that the subobject classifier Ω together with ∈1= pΩ : 1 × Ω → Ω satisfies the universal property of P1.
Let f ∈ Hom(1×A,Ω), so we have to show that there exists a unique morphism g ∈ Hom(A,Ω) such that
the following diagram commutes:

1×A 1× Ω

Ω

f

(Id1×g)

pΩ

Notice that pΩ is an isomorphism, so in particular a monomorphism. Let φ be its characteristic morphism,
i.e. the following diagram is a pullback square:

1× Ω 1

Ω Ω

pΩ true

φ
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Denote by !X the unique morphism X → 1 (for X ∈ C). So from the commutativity (and that pΩ is an
isomorphism), we have φ = true◦!1×Ω ◦ p−1

Ω . So

φ ◦ f = true ◦ (!1×Ω ◦ p−1
Ω ) ◦ f

= true ◦ (!Ω ◦ f), by uniqueness of Ω→ 1

= true◦!1×A, by uniqueness of 1×A→ 1

So the following diagram commutes:

1×A

1× Ω 1

Ω Ω

f

pΩ true

φ

But the inner square is a pullback, so there exists a unique morphism h ∈ Hom(1 × A, 1 × Ω) which
completes the diagram. We now claim that the following diagram commutes:

1×A 1× Ω

Ω

f

(Id1×pΩ◦h◦p−1
A )

pΩ

Let g := pΩ ◦ h ◦ p−1
A ∈ Hom(A,Ω). By the naturality of p, we have that the following diagram commutes:

1×A A

1× Ω Ω

pA

Id1×g g

pΩ

Thus
pΩ ◦ (Id1 × g) = g ◦ pA = pΩ ◦ h = f.

Thus the diagram indeed commutes. Assume g̃ ∈ Hom(A,Ω) also satisfies f = pΩ ◦ (Id1 × g̃). Since pΩ is
an isomorphism, we have

Id1 × g̃ = p−1
Ω ◦ f = Id1 × g.

So by projection, we have g = g̃. So Ω with pΩ is indeed (isomorphic with) the powerobject of 1.

Proposition 7. Let C be a locally small category with all pullbacks, a terminal object 1 and subobject
classifier. An object B ∈ C has a powerobject PB if and only if there is a natural isomorphism

HomC(B ×−,Ω) ∼= HomC(−,PB),

i.e. HomC(B ×−,Ω) is representable.

Proof. Assume C has powerobjects and let B ∈ C. By definition of the powerobject we have to for each
f ∈ HomC(B × A,Ω), there exists a unique morphism gf ∈ HomC(A,PB) such that f =∈B ◦(IdB × gf ).
Define

φA : HomC(B ×A,Ω)→ HomC(A,PB) : f 7→ gf .

Since gf defines f uniquely, by f =∈B ◦(IdB×gf ), we have that φA is surjective and it is moreover injective
because if gf1 = gf2 , then by the same formula we have f1 = f2. So φA is a bijection for all A ∈ C. So it
remains to show that for all α ∈ HomC(A,C), the following diagram commutes:

Hom(B × C,Ω) Hom(C,PB)

Hom(B ×A,Ω) Hom(A,PB)

−◦(IdB×α)

φC

−◦α
φA
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So we have to show that for each f ∈ Hom(B × C,Ω) that

φC(f) ◦ α = φA(f ◦ (IdB × α)),

holds. Recall that φA(f ◦ (IdB × α)) is the unique morphism such that the following diagram commutes:

B ×A B × PB

Ω
f◦(IdB×α)

IdB×φA(f◦(IdB×α))

∈B

Since φC(f) is the (unique) morphism such that ∈B ◦(IdB × φC(f)) = f , we have:

f ◦ (IdB × α) =∈B ◦(IdB × φC(f)) ◦ (IdB × α) =∈B ◦(IdB × φC(f) ◦ α)

So if we replace φA(f ◦ (IdB × α)) by φC(f) ◦ α in the diagram, it still commutes, because by uniqueness
of φA(f ◦ (IdB × α)), we have

φA(f ◦ (IdB × α)) = φC(f) ◦ α.

We now do the converse: Fix B ∈ C, so there exists an object B̃ ∈ C such that

φ : HomC(B ×−,Ω)→ HomC(−, B̃),

is a natural isomorphism. We now claim that B̃ is the powerobject of B. The only morphism in Hom(B̃, B̃)
that we know is IdB̃. Since φB̃ is bijective, there exists a unique morphism ∈B: B × B̃ → Ω such that
φB̃(∈B) = IdB̃. Let f ∈ HomC(B ×A,Ω). We have to show that the following diagram commutes:

B ×A B × B̃

Ω

IdB×φA(f)

f

∈B

Since φA is a bijection, it suffices to show that φA(f) = φA(∈B ◦(IdB × φA(f))). This is indeed the case:
By the naturality of φ, we have that the following diagram commutes:

Hom(B × B̃,Ω) Hom(B̃, B̃)

Hom(B ×A,Ω) Hom(A, B̃)

φB̃

−◦(IdB×φA(f)) −◦φA(f)

φA

So by applying this to ∈B, we get:

φA(∈B ◦(IdB × φA(f))) = φB̃(∈B) ◦ φA(f) = IdB̃ ◦ φA(f) = φA(f),

which shows the claim. So we are left to show that φA(f) is the unique morphism which makes the following
diagram commute:

B ×A B × B̃

Ω

IdB×φA(f)

f ∈B

Assume ĝ : A → B̃ is another morphism which makes the diagram commute (so φA(f) is replaced by ĝ).
Since φA is a bijection, we can write ĝ = φA(g) for some g ∈ Hom(B ×A,Ω). So

f =∈B ◦(IdB × φA(f)) =∈B ◦((IdB × ĝ) =∈B ◦(IdB × φA(g)) = g.

So f = g and consequently φA(f) = φA(g) = ĝ. Thus, B̃ is indeed the powerobject of B.
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Corollary 4. Let C be a locally small category with pullbacks and a terminal object 1. Then has C a
subobject classifier and powerobjects if and only there is a natural isomorphism

SubC(B ×−) ∼= HomC(−,PB).

for every object B ∈ C.

Proof. Let C have a subobject classifier Ω and powerobjects. Since C is locally small, we have natural
isomorphisms

SubC(−) ∼= HomC(−,Ω)

HomC(B ×−,Ω) ∼= HomC(−,PB)

So combining these we get what we wanted to show.
We now do the converse: Since P1 is the subobject classifier, we have from the given natural isomorphism:

Sub(−) ∼= Sub(1×−) ∼= Hom(−,P1) ∼= Hom(−,Ω)

Hom(A,PB) = Sub(B ×A) ∼= Sub((B ×A)× 1) ∼= Hom(B ×A,P1) ∼= Hom(B ×A,Ω)

Thus Ω is the subobject classifier and PB is the powerobject of B (for all B ∈ C) since C is locally small.

1.4 Cartesian closed categories

A function f : Y → X is defined as some subset of Y ×X, so the collection of functions between 2 fixed
sets form again a set. Thus it is not necessairy to include this as an axiom in set theory. We will see (in
the section of Exponentials in topoi) that an object consisting of the functions always exists in a topos, so
one gets it for free as in the case of Set. We call an object which consists of the functions an exponential
object:

Definition 5. Let C be a category which has all finite products. Let X,Y ∈ C. The exponential of X
with Y is an object Y X together with an evaluation morphism ev : Y X ×X → Y which is universal in the
following sense: If Z is another object in C and e : Z ×X → Y is a morphism, then there exists a unique
morphism d : Z → Y X such that the following diagram commutes:

Z ×X Y X ×X

Y

d×IdX

e ev

We call X ∈ C exponentiable if for all Y ∈ C, Y X exists. A category C is cartesian closed if it has all
finite products and every object is exponentiable.

Example 3. The category Set is cartesian closed.

Proof. We will show that if a category has a subobject classifier and powerobjects, then it is cartesian
closed from which the result follows, but we show it concretely:
Let X,Y be sets and let Y X := HomSet(X,Y ) and define

ev : Y X ×X → Y : (f, x) 7→ f(x).

Consider a function e : Z ×X → Y . Define

d : Z → Y X : z 7→ e(z, ·).

So for each z ∈ Z, x ∈ X:
ev ◦ (d× IdX)(z, x) = d(z)(x) = e(z, x),

which shows that e factors through ev. We now show that this factorization is unique: Assume that
c ∈ Hom(Z, Y X) satisfies e = ev ◦ (c× IdX). So

d(z)(x) = e(z, x) = ev ◦ (c× IdX)(z, x) = c(z)(x).

As this holds for all x ∈ X and z ∈ Z, we have that c = d.

13



Proposition 8. Let X ∈ C be exponentiable. The assignment Y 7→ Y X induces a (covariant) functor

(−)X : C → C.

Proof. So we first have to define fX ∈ HomC(Y X , ZX) for a morphism f : Y → Z. Consider the following
diagram:

Y X ×X Y

ZX ×X Z

evY

f

evZ

So by the universal property of ZX , there exists a unique morphism

fX : Y X → ZX

such that (fX × IdX) completes the diagram. We now show that this indeed defines a functor.
We first show that the identity is preserved, i.e. we have to show that for each Y ∈ C, (IdY )X = IdY X .
We clearly have that the following diagram commutes:

Y X ×X Y

Y X ×X Y

evY

(Id
Y X×IdX) IdY

evY

But by the universal property of Y X , there exists a unique morphism Y X → Y X such that the previous
diagram commutes and IdY X satisfies this property, so by uniqueness we have (IdY )X = IdY X .
We now show that the composition is preserved, i.e. we have to show that for all morphisms f ∈
Hom(Y,Z), g ∈ Hom(Z,W ), we have (g ◦ f)X = gX ◦ fX . By definition of f (X) and gX , the follow-
ing diagram commutes:

Y X ×X Y

ZX ×X Z

evY

(fX×IdX) f

evZ

ZX ×X Z

WX ×X W

evZ

(gX×IdX) g

evW

So the following diagram commutes:

Y X ×X Y

ZX ×X Z

WX ×X W

evY

(fX×IdX) f

evZ

(gX×IdX) g

evW

So again by uniqueness we have (g ◦ f)X = gX ◦ fX .

Recall that if C has binary products, we have (for X ∈ C) that the assignment Y → Y ×X defines a
(covariant) functor

−×X : C → C,

where a morphism f : Y → Z is mapped to

f ×X = f × IdX : Y ×X → Z ×X.

Proposition 9. Let C be a category with binary products. An object X ∈ C is exponentiable if and only if
the functor −×X : C → C has a right adjoint.

14



Proof. Let X be exponentiable, we claim that (−)X : C → C is the right adjoint of −×X. So we have to
show that for all Y,Z ∈ C there exists a bijection

φZY : Hom(Y ×X,Z)→ Hom(Y,ZX),

which is natural in X. We first construct φZY . Let f ∈ Hom(Y ×X,Z) be a morphism. By the universal
property of the exponent ZX (denote by ev to be the evaluation morphism), there exists a unique morphism
f̃ : Y × ZX → Z such that f = ev ◦ (f̃ × IdX), i.e. the following diagram is commutative:

Y ×X ZX ×X

Z

f

f̃×IdX

ev

So define φZY (f) := f̃ . Since f̃ is unique, φZY is well-defined. We now claim that φZY is a bijection:

• Let φZY (f) = φZY (g) for f, g ∈ Hom(Y ×X,Z), so

f = ev ◦ (φZY (f)× IdX) = ev ◦ (φZY (g)× IdX) = g.

So φZY is injective.

• Let f̃ ∈ Hom(Y ×ZX , Z). Define f := ev ◦ (f̃ × IdX). But φZY (f) is the unique morphism such that
f = ev ◦ (φZY (f)× IdX), so φZY (f) = f̃ . So φZY is surjective.

We now show that φZY is natural in Y , so fix Z ∈ C. Let f ∈ HomC(Y1, Y2), we have to show that the
following diagram commutes:

Hom(Y2 ×X,Z) Hom(Y2, Z
X)

Hom(Y1 ×X,Z) Hom(Y1, Z
X)

φZY2

−◦(f×Id) −◦f
φZY1

Let g ∈ Hom(Y2 ×X,Z). By definition of φZY1
, we that φZY1

(g ◦ (f × IdX)) is the unique morphism such
that

ev ◦ φZY1
(g ◦ (f × IdX)) = g ◦ (f × IdX),

i.e. the following diagram is commutative:

Y1 ×X ZX ×X

Z

φZY1
(g◦(f×IdX))×IdX

g◦(f×IdX)
ev

And we know that φZY2
(g) is the unique morphism such that the following diagram commutes:

Y2 ×X ZX ×X

Z

φZY2
(g)×IdX

g
ev

So precomposing the latter diagram with f × IdX , we get the following (commuting) diagram:

Y1 ×X ZX ×X

Z

(f◦φZY2
(g))×IdX

g◦(f×IdX)
ev
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So by uniqueness of φZY1
(g ◦ (f × IdX))× IdX , we get

φZY1
(g ◦ (f × IdX))× IdX = (f ◦ φZY2

(g))× IdX .

So we indeed have that the naturality in Y .
We now show the naturality in Z. Let f ∈ HomC(Z1, Z2) and fix Y ∈ C. So we have to show that the
following diagram commutes:

Hom(Y ×X,Z1) Hom(Y,ZX1 )

Hom(Y ×X,Z2) Hom(Y,ZX2 )

φ
Z1
Y

f◦− fX◦−
φ
Z2
Y

Let g ∈ Hom(Y ×X,Z1). So φZ2
Y (f ◦g) is the unique morphism such that the following diagram commutes:

Y ×X ZX2 ×X

Z2

f◦g

φ
Z2
Y (f◦g)×IdX

ev2

So we are going to use the same strategy as for the naturality in Y by showing that fX ◦ φZ1
Y (g) also

satisfies this commutativity. Write evi : ZXi ×X → Zi for the evaluation morphism (for i = 1, 2).
We know that φZ1

Y (g) is the unique morphism such that the following diagram commutes:

Y ×X Z1
X ×X

Z1

φ
Z1
Y (g)×IdX

g ev1

We also know that fX is (uniquely) defined such that the following diagram commutes:

ZX1 ×X Z1

ZX2 ×X Z2

ev1

fX×IdX f

ev2

So combining this, we get the following commuting diagram:

Y ×X Z1
X ×X

Z1 ZX2 ×X

Z2

φ
Z1
Y (g)×IdX

g ev1
fX×IdX

f
ev2

So from the commutativity of this diagram we get

f ◦ g = ev2 ◦ ((fX ◦ φZ1
Y )(g)× IdX).

This was what we needed to show the naturality in Z.
We now show the converse. Let F : C → C be the right adjoint of −×X : C×C. We are going to show that
for each Y ∈ C, F (Y ) = Y X becomes the exponent. We first have to construct ev ∈ Hom(F (Y )×X,Y ).
So by the natural isomorphism, this should correspond to a morphism in Hom(F (Y ), F (Y )), but the only
morphism we know for sure in there is the identity, so take ev := (φYF (Y ))

−1(IdF (Y )). So we have to show

that for each morphism e : Z × X → Y , there exists a unique morphism d : Z → F (X) such that the
following diagram is commutative:
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Z ×X F (Y )×X

Y

d×IdX

e ev

Since e ∈ Hom(Z ×X,Y ), we have φYZ (e) ∈ Hom(Z,F (Y )). We now claim that this plays the roll of d.
By the bijectiveness of φYZ , it suffices to show that

φYZ (e) = φYZ (ev ◦ (φYZ (e)× IdX)).

By the naturality of φZ in Z, we have that the following diagram commutes:

Hom(F (Y )×X,Y )) Hom(F (Y ), F (Y ))

Hom(Z ×X,Y ) Hom(Z,F (Y ))

φY
F (Y )

−◦(φYZ (e)×IdX) −◦φYZ (e)

φYZ

Recall ev = (φYF (Y ))
−1(IdX), so if we apply the commutativity to ev, we get

φZF (Y )(ev ◦ (φYZ (e)× IdX)) = φYF (Y )(ev) ◦ φYZ (e) = φYZ (e).

Proposition 10. Let C be a cartesian closed category with pullbacks and a subobject classifier. For every
object B ∈ C, ΩB is the powerobject for B.

Proof. This is just by definition of the exponent ΩB, indeed: Let ∈B: B ×ΩB → Ω be the evaluation. Let
f ∈ HomC(B × A,Ω). We have to show that there exists a unique morphism g : A → ΩB such that the
following diagram commutes:

B ×A B × ΩB

Ω

IdB×g

f ∈B

But ∈B is the evaluation, so this map exists (uniquely) by the universal property of the exponent ΩB.

2 Elementary topoi

Definition 6. An (elementary) topos is a category E with all pullbacks, a terminal object and a subobject
classifier such that every object has a powerobject. The plural of topos is topoi.

Example 4. The category Set is a topos.

Before we continue we introduce some notations:

Notation 1. We have seen that there is a one-to-one correspondance between SubE(A) and Hom(A,Ω)
where a subobject correspond to its characteristic morphism. If φ is the characteristic morphism of
m : S → A ∈ Sub(A), we also write char(m) := char(S) := φ. But by definition of the powerobject
(and that PA ∼= ΩA), there is also a one-to-one correspondance between Hom(A,Ω) and Hom(1,PA). If
s ∈ Hom(1,PA) corresponds to φ, we also write s = dφe.
By definition of the powerobject, there is a one-to-one correspondance between Hom(B×A,Ω) and Hom(A,PB),
we say that corresponding morphisms are P-transpose of eachother.

Proposition 11. A topos E is finitely complete.
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Proof. It is sufficient to show that E has finite products and equalizers. As proven before, binary products
exists as it is the pullback over the terminal object and the empty product is the terminal, so we only
have to show that equalizers exists. That they exists follows that E has products and pullbacks. Let

f, g ∈ HomE(A,B). Define (E, e) as the pullback of A
f×g−−→ B × B ∆←− B, so the following diagram is a

pullback square:

E B

A B ×B

e

d

∆

(f,g)

We claim that (E, e) is the equalizer of f and g. That fe = ge holds follow from the following calculation:

fe = π1(f, g)e = π1∆d = d = π2∆d = π2(f, g)e = ge.

Here we used the commutativity of the pullback square and the definition of the diagonal morphism.
So we are left to show that for all h ∈ Hom(C,A) such that fh = gh, h factors through e. We have this
factorisation (by universal property of the pullback) if there exists a morphism φ ∈ Hom(C,B) such that
the following diagram commutes:

C B

A B ×B
h

φ

∆

(f,g)

Since f ◦ h = g ◦ h, we have
δ ◦ f ◦ h = (f ◦ h, f ◦ h) = (f ◦ h, g ◦ h),

so φ := f ◦ h does indeed make the diagram commutes and thus there exists a unique morphism z̃ ∈
Hom(Z,E) such that z = e ◦ z̃.

Corollary 5. A category is a topos if and only if it has finite limits, a subobject classifier and powerobjects.

Proposition 12. The assignment B 7→ PB induces a functor P : Eop → E.

Proof. Let h ∈ Hom(B,C). Since ∈C ◦(h × Id) ∈ HomE(B × PC,Ω), there exists a unique morphism
gh : PC → PB (by definition the power object) such that the following diagram commutes:

B × PC B × PB

C × PC Ω

Id×gh

h×Id ∈B
∈C

Define P(h) := gh.
Let B = C and h = IdB, we now claim that P(IdB) := gIdB = IdPB. This is indeed the case because the
following diagram commutes:

B × PB B × PB

B × PB Ω

Id×Id

Id×Id ∈B
∈B

and because gIdB is the unique morphism which makes it commutate. But we see that IdPB makes it also
commutative, so they are equal.
Let f ∈ Hom(A,B) and h ∈ Hom(B,C). We have to show that P(h ◦ f) = P(f) ◦ P(h). So by definition
of P(h ◦ f), we have to show:

∈C ◦((h ◦ f)× Id) =∈A (Id ◦ (PfPh)).
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This follows from the following calculation:

∈C ◦((h ◦ f)× Id) = ∈C ◦(h× Id) ◦ (f × Id)

= ∈B ◦(Id× Ph) ◦ (f × Id), definition Ph
= ∈B ◦(f × Ph)

= ∈B ◦(f × Id) ◦ (Id× Ph)

= ∈A ◦(Id× Pf) ◦ (Id× Ph), definition Pf
= ∈A ◦(Id× (Pf ◦ Ph))

Recall that the diagonal morphism ∆B : B → B ×B is a monomorphism:

Definition 7. Let B ∈ E and δB := char(∆B) be the characteristic morphism of the diagonal morphism.
The singleton morphism of B is the P-transpose of δB and is denoted by {·}B ∈ Hom(B,PB).

Example 5. If E = Set, then for any set B, the singleton morphism is given by:

{·}B : B → P(B) : b 7→ {b}.

Proof. The diagonal of a set B (in Set) is ∆B : B → B × B : b 7→ (b, b). From the proof that Set has a
subobject classifier, we get that the characteristic morphism δB of ∆B is given by

δB : B ×B → {0, 1} : (b1, b2) 7→

{
1, if b1 = b2

0, else

From the proof that Set has powerobjects, we get that the P-transpose of δB is given by

{·}B : B → P(B) : b 7→ {b̃ ∈ B|b̃ = b} = {b}.

Lemma 1. Let B ∈ E. The singleton morphism {·}B is a monomorphism.

Proof. Let b1, b2 ∈ Hom(X,B) such that {·}B ◦ b1 = {·}B ◦ b2. So their P-transposes are equal, i.e.

δB(Id× b1) = δB(Id× b2).

By definition of δB, the following diagram is a pullback square:

B 1

B ×B Ω

∆B true

δB

We now claim that (for i = 1, 2)

X B

B ×X B ×B

bi

bi×IdX ∆B

IdB×bi

is a pullback square. It clearly commutes. So assume that there exists morphisms f1 ∈ Hom(Y,B ×X)
and f2 ∈ Hom(Y,B) (for some B ∈ C) such that the following diagram commutes:

Y

X B

B ×X B ×B

f1

f2

bi

bi×IdX ∆B

IdB×bi
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We will now show that g := prX ◦ f1 : Y → X is the unique morphism which completes the diagram. The
commutativity of the diagram means:

(f2, f2) = ∆B ◦ f2 = (IdB × b) ◦ f1 = (prB ◦ f1, b ◦ prX ◦ f1),

where prB : B×X → B and prX : B×X → X are the projections. Let pr1 : B×B → B be the projection
on the first B and pr2 : B ×B → B be the projection on the second. So from the commutativity we get:{

f2 = pr1 ◦ (IdB × bi) ◦ f1 = pr1 ◦ f1

f2 = pr2 ◦ (IdB × bi) ◦ f1 = bi ◦ prX ◦ f1

Notice that the first equation implies that

f1 = (prB ◦ f1, prX ◦ f1) = (f2, prX ◦ f1).

So
(bi × IdX) ◦ prX ◦ f1 = (b ◦ prX ◦ f1, prX ◦ f1) = (f2, prX ◦ f1) = f1.

And by the commutativity we had f2 = b ◦ prX ◦ f1. So we have that g := prX ◦ f1 factorizes f1 (resp.
f2) through (b × IdX) (resp. b). We now claim that this g is unique. Assume there exists a morphism
h ∈ Hom(Y,X) which also completes the diagram, then we have

g = prX ◦ f1 = prX ◦ (b× IdX) ◦ h = h.

Thus we have show that

X B

B ×X B ×B

bi

bi×IdX ∆B

IdB×bi

is indeed a pullback square for both i = 1 and i = 2. So we have that

X B 1

B ×X B ×B Ω

bi

bi×IdX ∆B true

IdB×bi δB

is a pullback diagram. But
δB(Id× b1) = δB(Id× b2),

so b1 × IdX : X → B ×X and b2 × IdX : X → B ×X have the same characteristic morphism, thus there
exists a (unique) morphism h : X → X such that

b1 × IdX = (b2 × IdX) ◦ h = (b2 ◦ h)× h.

So by projecting on the second component we have h = IdX and thus by projection on the first component
we have b1 = b2 ◦ h = b2. Thus we indeed have that {·}B is a monomorphism.

Lemma 2. Let C be a category and f ∈ HomC(X,Y ) be an equalizer which is an epimorphism, then it is
an isomorphism (dually a coequalizer and monomorphism is an isomorphism).

Proof. We only show the case that an equalizer which is a epimorphism is an isomorphism. Assume that
the following diagram is an equalizer diagram:

X Y Z
f g

h

So g ◦ f = h ◦ f . But f is an epimorphism, so g = h. But the equalizer of g and g is IdY . So there exists
a unique isomorphism k ∈ Hom(Y,X) such that f ◦ k = IdY , thus f = IdY ◦ k−1 but both IdY and k−1

are isomorphisms, so f is an isomorphism.
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Proposition 13. A topos is balanced, i.e. every monomorphism which is an epimorphism is an isomor-
phism.

Proof. We first show that any monomorphism m : S → X in a topos E is the equalizer of char(m) (the
characteristic morphism of m) and trueX = true◦!X . Assume that the following diagram commutes:

T X Ω
f char(m)

trueX

So (using that there exists only a unique morphism into the terminal object) we have that the following
diagram commutes:

T

S 1

X Ω

!T

f

m

!S

true

char(m)

As the square is a pullback square (by definition of char(m)), there exists a unique morphism g : T → S
which completes the diagram, i.e. f = m ◦ q which shows that m is the equalizer.
So by the previous lemma, we have that E is balanced.

3 Exponentials in topoi

In this section we show that every object in a topos E is exponentiable and consequently gives a charac-
terisation of topoi.

Theorem 1. Every topos E is cartesian closed.

Proof. Let C,B ∈ E . We first construct the object CB as follows: Define

v : B × P(C ×B)→ PC

as the P-transpose of
∈B×C : (C ×B)× P(C ×B)→ Ω.

Denote by σC : PC → Ω the characteristic morphism of the singleton arrow {·}C : C → PC and let
u : P(C ×B)→ PB be the P-transpose of σCv.
Define CB such that the following diagram is a pullback square:

CB 1

P(C ×B) PB

m trueB

u

i.e. it is the pullback of u along trueB. We now define the evaluation morphism e : B×CB → C: Consider
the following commutative diagram:

B × CB B × P(C ×B) PC C

B × 1 B × PB Ω 1

Id×m

Id×!

v

Id×u σC

{·}C

Id×dtrueBe ∈B
true
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The left square commutes by definition of CB. Since u is the P-transpose of σCv, we have ∈B ◦(Id× u) =
σCv, so the middle square commutes. Since σC is the characteristic morphism of {·}C , the right square

is a pullback square. Since dtrueBe is the characteristic morphism of trueB : B → 1
true−−→ Ω, we have

∈B ◦(Id× dtrueBe) = trueB, so the (unique) morphism B × 1→ 1 still makes the diagram commutative.
So there are morphisms B×CB → PC and B×CB which by the universal property of the pullback makes
sure that there exists a unique morphism e : B × CB → C.
We now show that (CB, e) is indeed the exponential. Assume f : B × C → A is a morphism in E , so
we have to show that there exists a unique morphism g : A → CB such that f = e(1 × g). Consider
f : B × C → A and let h : A→ P(C ×B) be its P-transpose, so

δC(Id× f) =∈C×B (Id× Id× h) : C ×B ×A→ Ω.

By P-transposing (using that δC (resp. v) is the P-transpose of δC (resp. ∈C ×B), this equation becomes

{·}C ◦ f = v(Id× h) : B ×A→ PC.

Since σC is the characteristic morphism of {}C , trueC = σC ◦ {·}C , so

trueC ◦ f = σC ◦ {·}C ◦ f = σC ◦ v ◦ (Id× h) : B ×A→ Ω.

The composition of a morphism with true, is again the morphism true, so trueC◦f = trueB×A = trueB◦prB
(where prB : B ×A→ B is the projection). By taking the P-transpose of trueB ◦ prB = σC ◦ v ◦ (Id× h)
(and again using that u is the P-transpose of σC ◦ v) we get

dtrueBe◦!A = uh.

So by this equality (and the definition of CB) the following diagram is commutative:

A

CB P(C ×B)

1 PB

h

m

u

dtrueBe

But the square is a pullback square, so h factors through m by some morphism g : A→ CB, i.e. h = mg.
We now claim that f = e◦ (Id×g) holds. Because {·}C is a monomorphism, this follows from the following
calculation:

{·}C ◦ f = v ◦ (Id× h) = v ◦ (Id×m) ◦ (Id× g) = {·}C ◦ e ◦ (Id× g).

It remains now to prove the uniqueness. By the existence of g we have

δC(Id× f) =∈C×B (Id× Id× h) =∈C×B (Id× Id×mg).

So mg defines f uniquely. But if g̃ : A→ CB would also satisfy this condition, we have mg = mg̃, but m
is a monomorphism, so g = g̃, so g is the unique morphism.

The previous theorems now give a characterisation of topoi:

Corollary 6. A category E is a topos if and only if it is cartesian closed with all equalizers and has a
subobject classifier.

Proof. If E is a topos we have that it is cartesian closed by the previous theorem and it has all equalizers
because we have shown that it is finitely cocomplete. For the converse: Since it has products and equalizers
is it finitely complete, so we only have to show that it has powerobjects. In the preliminaries we have
shown that if a category is cartesian closed, finitely complete and has a subobject classifier, then is ΩB the
powerobject for all B ∈ C.
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4 Direct image

In this section we define the direct image of a monomorphism k : B
′ → B in a topos E .

Define UB′ ∈ E and uB′ ∈ HomE(UB′ , B
′ × PB′) such that the following diagram is a pullback square:

UB′ 1

B
′ × PB′ Ω

u
B
′ true

∈
B
′

As this is a pullback and true : 1→ Ω is a mono, uB′ is a mono, so UB′ is indeed a subobject of B
′ ×PB′ .

Since k is a mono, B
′ × PB′ is a subobject of B × PB′ (by k × Id), so consequently (k × Id) ◦ uB′ makes

UB′ into a subobject of B × P. Define ek : B × PB′ → to be the characteristic morphism of (k× Id) ◦ uB′ ,
i.e. the following diagram is a pullback square:

UB′ 1 1

B
′ × PB′ Ω

B × PB′ Ω

u
B
′ true

Id

true

k×Id

∈
B
′

ek

Definition 8. Let k ∈ HomE(B
′
, B) be a monomorphism. Define

PB
′ ∃k−→ PB

to be the P-tranpose of ek.

Example 6. In E := Set, we have for every injection k : B
′ → B:

∃k : P(B
′
)→ P(B) : S

′ 7→ k(S
′
) =

{
b ∈ B|∃b′ ∈ S′ : k(b

′
) = b

}
.

Proof. Since

∈B′ : B
′ × P(B

′
)→ {0, 1} : (b

′
, S
′
) 7→

{
1, if b

′ ∈ S′

0, else

the pullback of

1

B
′ × P(B

′
) {0, 1}

true

∈
B
′

is given by the subset

UB′ :=
{

(b
′
, S
′
) ∈ B′ × P(B

′
)|b′ ∈ S′

}
with uB′ : UB′ → B

′ × P(B
′
) the inclusion function. So the characteristic morphism of

(k × Id) ◦ uB′ : UB′ → B
′ × P(B

′
)→ B × P(B

′
) : (b

′
, S
′
) 7→ (k(b

′
), S

′
),

is given by

ek : B × P(B
′
)→ {0, 1} : (b, S

′
) 7→

{
1, if ∃b′ ∈ S′ s.t. b = k(b

′
)

0, else

Thus the P-transpose of ek is indeed given by what we wanted to show.

23



Proposition 14. Let S
m−→ B

′ k−→ B be monics in E. Then

∃kdchar(m)e = dchar(km)e : 1→ PB.

Proof. By P-transposing, we have to show

ek(Id× dchar(m)e) = char(km) : B ∼= B × 1→ Ω.

Since these morphisms are predicates, they characterize a subobject of B, so to show that this equality
holds, we have to show that they characterize the same subobject.
We have (by definition of k and m) that S is the subobject with characteristic morphism char(km), so we
have to show that the following diagram is a pullback square:

S × 1 1

B
′ × 1

B × 1 B × PB′ Ω

m×Id

true

k×Id
Id×dchar(m)e ek

We have (immediatly) that the following square is a pullback square:

B
′ × 1 B

′ × PB′

B × 1 B × PB′

Id×dchar(m)e)

k×Id k×Id

Id×dchar(m)e)

This together with the pullback which defines ek and U
′
B, we get a commutative diagram

S × 1 U 1 1

B
′ × 1 B

′ × PB′ Ω

B × 1 B × PB′ Ω

m×Id u
B
′ true

Id

true
Id×dchar(m)e

k×Id k×Id

∈
B
′

Id×dchar(m)e ek

where the left-below and both right diagrams are pullback squares. Since the right squares (either of one
them is sufficient) is a pullback square, there exists a unique morphism w : S × 1→ UB′ which completes
the diagram. So to show that S × 1 is the pullback of the whole diagram, it is sufficient to show that the
following diagram is a pullback square (here we use that the other squares are pullback squares):

S × 1 UB′ 1

B
′ × 1 B

′ × PB′ Ω

w

m×Id u
B
′ true

Id×dchar(m)e ∈
B
′

Let u : X → B
′

be a morphism such that ∈B′ ◦(Id×dchar(m)e) ◦ (u× Id) = trueX , we have to show that
u factors uniquely through m. But

char(m) ◦ u =∈B′ ◦(Id× dchar(m)e) ◦ (u× Id) = trueX .

So by definition of the characteristic morphism of m (which is defined by a pullback), u factors indeed
through m.

Theorem 2. (”Beck-Chevally Condition for ∃”) Let k : B
′ → B be a monomorphism. If the diagram
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C
′

B
′

C B

g
′

m k

g

is a pullback square, then is the following diagram commutative:

PB′ PC ′

PB PC

∃k

Pg′

∃m
Pg

Proof. We have to show Pg ◦∃k = ∃m ◦Pg
′

: PB′ → PC. This is equivalent to showing that the P-transpose
of both morphisms are equal, i.e. we have to show

ek(g × Id) = em(Id× Pg
′
) : C × PB

′ → Ω.

So it is sufficient to show that these characteristic functions characterize the same subobjects of C × PB′ .
The corresponding subobjects are defined by the pullbacks of

C × PB
′ ek(g×Id)−−−−−−→ Ω

true←−− 1

C × PB
′ em(Id×Pg′ )−−−−−−−→ Ω

true←−− 1

Since a subobject has a unique characteristic morphism, we have to show that the (objects of the) pullbacks
are isomorphic.
By the given we have that the left diagram is a pullback square and we have (immediatly) that the right
diagram is also a pullback square:

C
′ × PB′ B

′ × PB′

C × PB′ B × PB′

g
′×Id

m×Id k×Id

g×Id

C
′ × PB′ C

′ × PC ′

C × PB′ C × PC ′

Id×Pg′

m×Id m×Id

Id×Pg′

By definition of ∈k (resp. ∈m), we have that the following diagrams are pullback squares:

UB′ 1 1

B
′ × PB′ Ω

B × PB′ Ω

u
B
′ true

Id

true

k×Id

∈
B
′

ek

UC′ 1 1

C
′ × PC ′ Ω

C × PC ′ Ω

u
C
′ true

Id

true

m×Id

∈
C
′

em

Since the previous diagrams are pullbacks, we have that the pullback of

C × PB
′ ek(g×Id)−−−−−−→ Ω

true←−− 1

is the pullback of

UB′ 1 1

C
′ × PB′ B

′ × PB′ Ω

C × PB′ B × PB′ Ω

u
B
′ true

Id

true

m×Id

g
′×Id

k×Id

∈
B
′

g×Id ek
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So the pullback is the pullback of the following diagram:

UB′ 1

C
′ × PB′ B

′ × PB′ Ω

u
B
′ true

g
′×Id ∈

B
′

Analogously is the pullback of

C × PB
′ em(Id×Pg′ )−−−−−−−→ Ω

true←−− 1

given by the pullback of

UC′ 1

C
′ × PB′ C

′ × PC ′ Ω

u
C
′ true

Id×Pg′ ∈
C
′

By the definition of Pg′ , we have that ∈B′ ◦(g
′ × 1) =∈C′ ◦(Id × Pg′), so the diagrams have the same

pullback.

Corollary 7. If k : B → B
′

is a monomorphism, then is

PB ∃k−→ PB
′ Pk−→ PB,

the identity on PB.

Proof. We have that

B B

B B
′

Id

Id k

k

is a pullback square. So by Beck-Chevally, we have that the following diagram commutes:

PB PB

PB′ PB

∃k

PId

∃Id

Pk

So Pk ◦ ∃k = ∃Id ◦ PId. Since P is a functor, we have PIdB = IdPB. So it remains to compute ∃Id.
Recall that ∃IdB is the P-transpose of eIdB and eIdB is defined as the characteristic morphism of (IdB ×
Id) ◦ uB, which was constructed as followed:

UB 1 1

B × PB Ω

B × PB Ω

uB true

Id

true

IdB×Id

∈B

eIdB

where the upperleft square is also a pullback, so we see that eId =∈B. So ∃IdB is the P-transpose of ∈B.
Thus ∃IdB is the unique morphism such that the following diagram commutes:

B × PB B × PB

Ω

IdB×∃IdB

∈B
∈B

But IdB satisfies also this condition (when replaced with ∃IdB ) Thus we have ∃Id = Id, so Pk◦∃k = ∃Id◦PId
= Id.
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5 Monads and monadic functors

In this section we introduce the notion of monads and algebras on monads which are generalisations of the
notion of a monoid and the action of a monoid on a set. Then we introduce monadic functors, these are
functor which are equivalent to the forgetfull functor from algebras to the monad.

5.1 Monads

Recall that a monoid is a set M with a binary operation ? : M ×M →M which is associative and which
has a neutral element for ?. Given a set M , one can always construct the free monoid on M as follows:
Let

T (M) =
⋃
n∈N

Mn =
⋃
n∈N
{(m1, · · · ,mn)|mi ∈M} ,

i.e. T (M) consists of all finite sequences with elements in M . Notice that every element m ∈M corresponds
with the sequence (m) of 1 element, so one has a function

εM : M → T (M) : m 7→ (m).

If m := (m1, · · · ,mn) and m̃ := (m̃1, · · · , m̃ñ) are elements in T (M), one can define the composition m?m̃
as follows:

m ? m̃ := (m1, · · · ,mn, m̃1, · · · , m̃ñ).

Since an element in T (M)× T (M) can be considered as an element in T (T (M)), we have that the multi-
plication can be seen as a function:

µM : T (T (M))→ T (M) : (m, m̃) 7→ m ? m̃.

So if one has already a monoid structure on M , one has a function

ηM : T (M)→M : (m1, · · · ,mn) 7→ m1m2 · · ·mn

and the empty sequence is mapped to the neutral element. If f : M1 → M2 is a function (between sets),
this induces a function

T (f) : T (M1)→ T (M2) : (m1, · · · ,mn) 7→ (f(m1), · · · , f(mn)).

So T defines a functor in Set→ Set and µM and ηM defines natural transformations which satisfy certain
properties corresponding with the neutral element and associativity. So a monoid can be generalized to
the notion of a monad :

Definition 9. A monad in a category C consists of a functor T : C → C and natural transformations
µ : T 2 → T and η : I → T where I is the identityfunctor such that the following diagrams commute:

T 3 T 2

T 2 T

µT

Tµ µ

µ

IT T 2 TI

T

ηT

Id µ
Tη

Id

The following proposition shows that each adjoint pair induces a monad:

Proposition 15. Let F a G : C → D be an adjoint pair, with unit η : IdC → GF and counit ε : FG→ IdD.
Define

µC := GεF (C) : GFGF (C)→ GF (C)

for each C ∈ C. Then (GF, η, µ) defines a monad in C.

Proof. We first have to show that µC is a natural transformation. Because F (C) ∈ D and ε is a natural
transformation, we have for each f ∈ HomC(C1, C2) that the following diagram commutes:
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FGF (C1) F (C1)

FGF (C2) F (C2)

εF (C1)

FGF (f) F (f)

εF (C2)

Since G is a functor, it preserves composition, so the following diagram commutes:

GFGF (C1) GF (C1)

GFGF (C2) GF (C2)

G◦εF (C1)

GFGF (f) GF (f)

εGF (C2)

This means exactly that T := GF is a natural transformation.
So we now show that (GF, η, µ) indeed defines a monad in C.
We first show the associativity rule. Since ε is a natural transformation, we have that the following diagram
commutes (for C ∈ C, thus F (C) ∈ D):

FG(FG(FC)) Id(FG(FC))

FG(FC) Id(FC)

εFG(FC)

FG(εFC) εFC

εFC

So by precomposing with G we have that the following diagram commutes (because G is a functor and
thus preserves composition):

T 3(C) = GFG(FG(FC)) GFG(FC) = T 2(C)

T 2(C) = GFG(FC) GFC = T (C)

GεFG(FC)

GFG(εFC) GεFC

GεFC

Since µC := GεFC , we thus have the associativity.
Because η, ε form an adjunction, we have

IdF (C) = εF (C) ◦ F (ηC), IdG(D) = G(εD) ◦ ηG(D).

So in particular by composing with G resp. F :

IdGF (C) = GεF (C) ◦GFηC , IdFG(D) = FG(εFD) ◦ FηG(D),

which are exactly the axioms corresponding to the neutral element.

5.2 Algebras on a monad

A monoid M (with multiplication ν : M ×M →M and neutral element given by e : 1→M) acts on a set
Y if there is a function h : M × Y → Y such that the following diagrams commute:

M ×M × Y M × Y

M × Y Y

IdM×h

ν×IdY h

h

Y ∼= 1× Y M × Y

Y

e×IdY

IdY h

Definition 10. Let (T, µ, η) be a monad on a category C. The category of T -algebras, denoted by CT , has
as its objects pairs (C, h : TC → C) where C ∈ C an object and h a morphism such that the following
diagrams commute:

T 2C TC

TC C

Th

µC h

h

C TC

C

ηC

Id
h
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A morphism f : (C1, h1) → (C2, h2) of T -algebras is a morphism f : C1 → C2 such that the following
diagram commutes:

TC1 TC2

C1 C2

Tf

h1 h2

f

The following lemma is clear:

Lemma 3. Let (C, h) be a (T, η, µ)-algebra. The assignment (C, h) 7→ C induces a functor

GT : CT → C,

called the forgetfull functor.

Proposition 16. Let (T, η, µ) be a monad in C. The forgetfull functor

GT : CT → C : (C, h) 7→ C,

has a left adjoint.

Proof. Define F T : C → CT by F TC := (TC, µC). That F TC is indeed a T -algebra is by definition of µC
since (T, η, µ) is a monad. For f ∈ HomC(C1, C2), set F T (f) := Tf . Because µ : T 2 → T is a natural
transformation, the following diagram commutes:

T 2C1 TC1

T 2C2 TC2

µC1

T 2f TF

µC2

Which means that
Tf : (TC1, µC1)→ (TC2, µC2),

is a T -algebra morphism. Since T is a functor, so is F T .
We now show that F T a GT . Notice that for C ∈ C,

GTF TC = GT (TC, µC) = TC,

thus a natural transformation ηT : IdC → GTF T consists of morphisms C → TC, so define ηT := η (this
is a natural transformation because η is).
For (C, h) ∈ CT , we have

F TGT (C, h) = F TC = (TC, µC),

thus a natural transformation εT : F TGT → IdCT consists of morphisms (TC, µC) → (C, h). Since (T, h)
is a T -algebra, the following diagram commutes:

T 2C TC

TC C

Th

µC h

h

This shows that
h : (TC, µT )→ (C, h),

is a morphism of T -algebras and in particular that

εT :=
(

(TC, µC)
h−→ (C, h)

)
(C,h)

,
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is a natural transformation. So we are now left to show

IdFTC = εTFTC ◦ F
T (ηTC), IdGT (C,h) = GT (ε(C,h)) ◦ ηGT (C,h).

From

εTFTC = ε(TC,µC) = µC , F T (ηTC) = F T (ηC) = TηC

GT (εT(C,h) = GT (h) = h , ηTGT (C,h) = ηTC = ηC ,

the equations we have to show reduce to

µC ◦ TηC = Id, h ◦ ηC = Id

By definition of (T, µ, η) being a monad, the first equation holds and by definition of (C, h) being a T -
algebra, the second equation holds. So η (resp. ε) is indeed a unit (resp. counit) of an adjunction
F T a GT .

We have seen that we have a forgetfull functor from the algebras over a monad to the monad itself. We
call a functor (with a left adjoint) monadic, if it is in a sense equivalent to the forgetfull functor induced
by adjointness.

Proposition 17. Let F a: C → D be an adjoint pair. Then there exists a functor

K : D → CT

such that the following diagram (of categories and functors) commute:

D CT

C C

K

G FTF

IdC

GT

We call K the comparison functor.

Proof. Let (T, ) be the monad induced by the adjunction. Define for D ∈ D:

K(D) := (GD,GεD).

Since ε : FG → IdD is a natural transformation and εD ∈ HomD(FGD,D), we have that the following
diagram commutes:

FG(FGD) IdD(FGD) = FG(D)

FGD IdD(D)

εFGD

FG(εD) εD

εD

Since G is a functor, it preserves composition. So applying this diagram to G gives the desired commutative
diagram which shows the first requirement to be a T -algebra. The second requirement is that the following
diagram commutes:

GD GF (GD)

GD

ηGD

IdGD
GεGD

But this commutativity holds because (F,G) form an adjoint pair with unit η and counit ε. So K(D) is
indeed a T -algebra.
For a morphism f ∈ HomD(D1, D2), set K(f) := G(f). We have to show that

K(f) = G(f) : (GD1, GεD1)→ (GD2, GεD2),

is a morphism of T -algebras. Because ε is a natural transformation and G(f) ∈ HomC(GD1, GD2), we
have that the following diagram commutes:
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FG(D1) GD1

FG(D2) GD2

εD1

FG(f) G(f)

εD2

So by applying this commutative diagram to the functor G, we get the desired commutative diagram to
show that G(f) is indeed a morphism of T -algebras. Since G is a functor, we have that K is a functor. So
we are left to show that

D CT

C C

K

G FTF

IdC

GT

commutes. That GT ◦K = G follows from:

GT ◦K(D) = GT (GD,GεD) = G(D)

GT ◦K(f) = GT (K(f)) = G(f)

That K ◦ F = F T follows from:

K ◦ F (C) = K(F (C)) = (GFC,GεFC) = (TC, µC) = F T (C)

K ◦ F (f) = K(F (f)) = GF (f) = T (f) = F T (f)

Definition 11. A functor G : A → C is monadic if G has a left adjoint F and the comparison functor
K : A → CT (defined in the previous proposition) is an equivalence of categories.

Definition 12. A functor F : A → B creates limits if for each diagram H : J → A (i.e. a functor) such

that F ◦H has a limiting cone (B
qj−→ FH(j))j∈J , there exists a cone (A

pj−→ H(j))j∈J (on H) such that
F (A) = B and F (pj) = qj for all j ∈ J and this cone is a limiting cone on H.

Theorem 3. A monadic functor G : A → C creates limits.

Proof. If G : A → C is monadic, there is an equivalence of categories K : A → CT such that the following
diagram commutes:

A CT

C

K

G
GT

As an equivalence of categories preserves limits, it therefore suffices to show that GT preserves limits.

Let H : J → CT be a diagram and write H(j) =: (Cj , TCj
hj−→ Cj). Assume that

τ := (C
τj−→ GT ◦H(j))j∈J ,

is a limiting cone (on GT ◦H). Since GT is the forgetfull functor, we have GT ◦H(j) = Cj .
Let φ ∈ HomJ(j1, j2). Consider the following diagram:

TC

TCj1 TCj2

GTH(j1) = Cj1 Cj2 = GTH(j2)

Tτj1 Tτj2

hj1

TGTH(φ)

hj2

GTH(φ)
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The (top) triangle commutes because τ is a natural transformation (so GTH(φ) ◦ τj1 = τj2) and then
applying T preserves the composition. The (bottom) square commutes because GTH(φ) is a T -algebra
morphism (Cj1 , hj1)→ (Cj2 , hj2). This shows that

(TC
hj◦Tτj−−−−→ GT ◦H(j) = Cj)j∈J ,

is a cone on GT ◦H. But τ is the limiting cone, so there exists a unique morphism h : TC → C such that
for each j ∈ J , the following diagram commutes:

TC C

TCj Cj

h

Tτj τj

hj

We now show that (C, h) is a T -algebra, i.e. we have to show that

h ◦ ηC = IdC , h ◦ µC = h ◦ TH.

Consider the following diagram:

C TC C

Cj TCj Cj

ηC

τj Tτj

h

τj
ηCj hj

The left square commutes by naturality of η and the right square commutes by h. Since (Cj , hj) is a
T -algebra, the bottom row is the identity IdCj . So for all j ∈ J ,

τj = τj ◦ h ◦ ηC .

So by the universal property of the limiting cone τ , we have IdC = h ◦ ηC .
Using the commutativity of the right commuting square, we have

τj ◦ h ◦ Th = hj ◦ T (τj) ◦ T (h) = hj ◦ T (τj ◦ h)

= hj ◦ T (hj ◦ T (τj)) = hj ◦ T (hj) ◦ T 2(τj)

Now consider the following diagram:

T 2C T 2Cj TCj

TC TCi Cj

T 2(τj)

µC µCj

T (hj)

hj

T (τj) hj

The left square commutes by the naturality of µ and the right commutes because (Cj , hj) is a T -algebra.
So we have

τj ◦ h ◦ Th = hj ◦ T (hj) ◦ T 2(τj)

= hj ◦ T (τj) ◦ µC
= τj ◦ h ◦ µC

Again by the universal property of the limiting cone τ , we have h ◦ Th = h ◦ µC . Thus (T, h) is indeed a
T -algebra. So in particular we have that τj : C → Cj is a morphism of T -algebras. Because GT : CT → C
is faithfull, i.e. HomT

C (C1, C2) ⊆ HomC(C1, C2), we have that

σ := (τj : (C, h)→ (Cj , hj) = H(j))j∈J

is a cone on H and in particular GTσ = τ . And so we are now left to show that σ is a limiting cone of H.
Assume that

κ :=
(
κj : (C̃, h̃)→ H(j) = (Cj , hj)

)
j∈J

,
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is another cone of H. So κ is in particular a cone on GTH. But τ is the limiting cone on GTH, so there
exists a unique morphism f ∈ HomC(C̃, C) such that κj = τj ◦ f . So we are left to show that

(C̃, h̃)
f−→ (C, h),

is a morphism of T -algebras, i.e. f ◦ h̃ = h ◦ Tf . Using the universal property of the limiting cone, this
equality follows from:

τj ◦ f ◦ h̃ = κ ◦ h̃ = hj ◦ T (κj)

= hj ◦ T (τj ◦ f)

= hj ◦ T (τj) ◦ T (f)

= τj ◦ h ◦ T (f)

We now give a criteria for when a functor is monadic.

Theorem 4. Let F a G : C → D be an adjoint pair, T its corresponding monad and K : D → CT be the
comparison functor. Then

1. If D has coequalizers of all reflexive pairs, then K has a left adjoint L.

2. If G preserves the coequalizers of the reflexive pairs, then is the unit of the adjunction L ` K an
isomorphism, i.e. IdCT

∼= K ◦ L.

3. If G reflects isomorphisms, then the counit of L a K is an isomorphism, i.e. L ◦K ∼= IdD.

Proof. Let (C, h : GFC → C) ∈ CT be a T -algebra, we first construct L(C, h): If ε (resp. η) is the
counit (resp. unit) of F a G, then IdF (C) = εF (C) ◦ F (ηC). And by definition of a T -algebra, we have
h ◦ ηC = IdC , so Fh ◦ FηC = IdF (C). Thus Fh, εFC : FGFC → FC is a reflexive pair, so by hypothesis it
has a coequalizer e : FC → L(C, h), i.e. the following diagram is a coequalizer diagram:

FGFC FC L(C, h)
Fh

εFC

e

Let f ∈ HomCT ((C1, h1), (C2, h2)) is a morphism of T -algebras. So by the universal property of the
coequalizer, there exists a unique morphism L(f) such that the following diagram commutes:

FC1 L(C1, h1)

F (C2) L(C2, h2)

e1

F (f) L(f)

e2

It is immediate that L is a functor, because F is.
We now show that L a K. We first define the unit λ. By definition of a T -algebra, we have that
h ◦ ηC = IdC . So we have that the following diagram is a coequalizer diagram:

GFGFC GFC C
GFh

GεFC

h

As G preserves composition, we have that the following diagram commutes:

GFGFC GFC GL(C, h)
GFh

GεFC

Ge
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So by the universal property of the equalizer, there exists a unique morphism

λC : C → GL(C, h),

such that Ge = λC ◦ h. We now claim that λC defines a natural transformation

λ : IdCT → K ◦ L,

i.e. we have to show that for each morphism f : (C1, h1) → (C2, h2) of T -algebras, the following diagram
commutes:

(C1, h1) KL(C1, h1)

(C2, h2) KL(C2, h2)

f

λC1

KL(f)

λC2

Using that h1 is an epimorphism (since it is a coequalizer), the equality follows from the following calcu-
lation:

λC2 ◦ f ◦ h1 = λC2 ◦ h2 ◦GF (f)

= G(e2) ◦GF (f) = G(e2 ◦ F (f))

= G(L(f) ◦ e1) = GL(f) ◦G(e1)

= GL(f) ◦ λC1 ◦ h1

= KL(f) ◦ λC1 ◦ h1

We now define the counit κ. By definition of L, we have for any D ∈ D that the following diagram is a
coequalizer diagram:

FGFGD FGD LKD = L(GD,GεD)
FGεD

εFGD

eGD

But εD ◦FGεD = εD ◦ εFGD, so by the universal property of the equalizer, there exists a unique morphism
κD : LKD → D such that εD = κD ◦ eGD. That κ := (κD)D∈D is a natural transformation, follows from:

f ◦ κD1 ◦ eGD1 = f ◦ εD1

= εD2 ◦ FG(f)

= κD2 ◦ eGD2 ◦ FG(f)

= κD2 ◦ LG(f) ◦ eGD1

= κD2 ◦ LK(f) ◦ eGD1

because eGD1 is an epimorphism. So L a K as desired.
If G preserves the coequalizers of the reflexive pairs, then we have that Ge is the coequalizer of GFh with
GεFC , but L(C, h) was by definition the coequalizer, so λC is an isomorphism (for all C). So IdCT

∼= K ◦L.
Using ηGD, we have that

GFGFGD GFGD GD
GFGεD

GεFGD

GεD

is a coequalizer diagram. So G(κD) is an isomorphism, so if moreover, G reflects isomorphisms, we have
that κD is an isomorphism (for all D), so L ◦K ∼= IdD.

So by the definition of a monadic functor, the previous theorem summarizes as follows:

Corollary 8. (”Beck’s theorem”) If A has coequalizers of all reflexive pairs, the functor G : D → C has
a left adjoint, reflects isomorphism and preserves those coequalizers (of reflexive pairs), then is G monadic.
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6 Colimits

In this section we will show that each topos E has all finite colimits. This will be done by showing that
Eop has finite limits.

Proposition 18. The power set functor P : Eop → E has a left adjoint.

Proof. We claim that
Pop : E = (Eop)op → Eop,

is the left-adjoint of P, indeed:

HomE(A,PB) ∼= HomE(A×B,Ω) ∼= HomE(B ×A,Ω) ∼= HomE(B,PA) ∼= HomEop(PA,B),

where we used that ΩB ∼= PB.

Proposition 19. The powerobject functor is faithfull.

Proof. Let h, k ∈ Hom(B,A) such that Ph = Pk, so

Ph ◦ {·}A = Pk ◦ {·}A.

Taking the P-tranpose of this equation gives us

δA ◦ (h× 1) = δA ◦ (k × 1) : B ×A→ A×A→ Ω.

As this is a morphism to Ω, they classify the same subobject. But the following diagram is a pullback
square:

B A 1

B ×A A×A Ω

h

(Id,h) ∆A true

(h,Id) δA

And the same when h is replaced with k. So there exists an isomorphism φ ∈ Hom(X,X) such that the
following diagram commutes:

B B

B ×A

φ

(h,Id)

(k,Id)

So
(k ◦ φ, φ) = (k, Id) ◦ φ = (h, Id).

Thus by projection on the second component we have φ = Id, thus by projection on the first component
we have

h = k ◦ φ = k ◦ Id = k.

So P is indeed faithfull.

Corollary 9. The powerobject functor reflects isomorphisms.

Proof. Because P is faithfull, it reflects mono -and epimorphisms. But a topos is balanced, i.e. an epimor-
phism which is a monomorphism is an isomorphism, so P reflects isomorphisms.

Proposition 20. The powerobject functor P : Eop → E is monadic and in particular creates all limits.
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Proof. By Beck’s theorem we have to show that Eop has coequalizers of all reflexive pairs, P preserves these
coequalizers, P has a left adjoint and P reflects isomorphisms.
We have seen that Pop is the left adjoint of P. In the previous corollary we have shown that is reflects
isomorphisms. Since E has equalizers (of all pairs), Eop has (by definition of the opposite category) all
coequalizers, so in particular of the reflexive pairs. So we only have to show that P preserves those
coequalizers. So consider such a coequalizer in Eop, i.e. we have the following equalizer diagram (in E):

C B A
g

h

k

and because f and g form a reflexive pair, there exists a morphism d : A→ B such that d◦h = IdB = d◦k.
So we have to show that the following diagram is a coequalizer (in E):

PA PB PCPh
Pk

Pg

Because hg = hk and P is a functor, we have Pg ◦ Ph = Pg ◦ Pk, so we only have to show the universal
property. Assume there is an object D ∈ E and a morphism f ∈ Hom(PB,D) such that the following
diagram is commutative:

PA PB DPh
Pk

f

We have to show that f factorises through Pg.
Consider the following diagram:

C B

B A

g

g h

k

This diagram commutes and we now claim that it is a pullback square: Consider the following commuting
diagram:

X

C B

B A

f2

f1
g

g h

k

So in particular (by composing with d) we have

f1 = IdB ◦ f1 = d ◦ h ◦ f1 = d ◦ k ◦ f2 = f2.

Thus h ◦ f1 = k ◦ f2 = k ◦ f1, but g is the equalizer of h and k, so there exists a unique s : X → C such
that f2 = f1 = g ◦ s. So it is indeed a pullback square.
Since g is an equalizer, it is a monomorphism. And because dk = IdB, k is also a monomorphism (if
kφ1 = kφ2, for some morphisms φ1, φ2, then φ1 = dkφ1 = dkφ2 = φ2). So we are now in the setting of
Beck-Chevalley, thus the following diagram commutes:

PB PC

PA PB

Pg

∃h ∃g
Pk

In the same way that k is a monomorphism, h is also a monomorphism. Thus from the corollary of Beck-
Chevalley, we have Pg ◦ ∃g = IdPC and Ph ◦ ∃h = IdPB.
So we get:

f ◦ ∃g ◦ Pg = f ◦ Pk ◦ ∃h = f ◦ Ph ◦ ∃h = f ◦ IdPB = f.
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This shows that f factorizes through Pg, thus Pg is indeed the coequalizer of Ph and Pk. Thus P preserves
coequalizers of reflexive pairs. Thus P is monadic by Beck’s theorem.

We are now ready to prove that a topos has all finite colimits:

Theorem 5. A topos E is finitely cocomplete.

Proof. To show that E has all colimits, we can equivalently show that Eop has all finite limits. Let J be a
finite category and consider a J-diagram H : J → Eop. Because E has all limits, we know that P ◦H has
a limiting cone. But P creates limits, thus there exists a limiting cone for H which shows that Eop has all
finite limits.
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