
Bachelorthesis: Fundamental mathematics
Lambda calculus

Kobe Wullaert

0.1 Abstract

In this thesis we are going to study the semantics of the (untyped) lambda calcu-
lus and in particular we show a characterization of the theory corresponding to
Scott’s model. Lambda calculus is a formal way to define functions and describe
their equality, this lays the foundation of the functional programming paradigm.
The semantics of a language is like a representation theorem, it gives a meaning
to the language (more specifically to each term). There are different sorts of
semantics, the one that we will discuss is the denotational/mathematical seman-
tics. We are going to represent functions and their equality as a mathematical
structure (model). From a mathematical viewpoint this is very interesting be-
cause it is analogous to logic, where we also describe equality between terms,
but instead of abstract functions, terms represent truth values.
Most of this thesis is based on the book [3], which is a leading book about the
untyped lambda calculus.

0.2 Introduction

In the first chapter we introduce all concepts of the untyped λ-calculus, so we
introduce different axioms that are used in the theory, some properties about
terms like solvability, some special terms which lead to combinatory logic, an
algebraic theory that corresponds to the λ-theory. We also define some prop-
erties about theories like Hilbert-Post complete theories, which are maximal
theories such that not every term is in relation with every other. In the end
of the chapter we introduce and investigate a specific theory K which will turn
out to be the answer to the main question of this thesis: what is the theory of
Scott’s model? Then in chapter 2, we introduce Bohm-trees corresponding to
terms, this tree is like a parse tree, but with the exception that before setting
up the parse tree, the term is replaced by a minimal (equal) term called the
head normal-form. Then in chapter 3, everything we defined earlier, will come
together. We first develop the notion of a λ-model, but before doing this we first
introduce combinatory logic. Then we introduce other models like the Term and
syntactical model and we show that these are indeed λ-models. The term model
is the most intuitive model (corresponding directly to the theory) and we need
it to show that an equality in a λ-theory holds if and only if it holds in every
λ-model which is a very powerfull theorem. The syntactical model is later used
to show that Scott’s model D∞ is indeed a model. But before we can define
D∞ we need the notion of complete partial orders (cpo’s) and projective limits
(on cpo’s). At last we prove that the theory K∗ is indeed the theory of D∞.
Although the λ-calculus is mainly used in theoretical computer science, this
was not the reason why it was introduced. Alonzo Church is the founder of
the calculus with the goal to create a new foundation of mathematics (so a new
way of defining logic) and to investigate the notion of a function. Combinatory
logic was developed for the same reason by eliminating bound variables and
replacing them by combinators, but was researched (at the beginning) indepen-

1

dantly. The founder of combinatory logic is Moses Schonfinkel, but was further
developped by Haskell Curry.
The theorem that motivates the statement that the lambda calculus is another
foundation of mathematics is given by the Curry-Howard isomorphism, also
called the Curry-Howard correspondance. This statement gives an equivalence
between the different types of lambda calculi and different types of logic. For
instance the simply-typed lambda calculus corresponds to the minimal propo-
sitional logic. More generally, without the explicit use of the λ-calculus, is that
proof systems are equivalent to the models of computation. More information
about the Curry-Howard correspondance is given in [14].
The reason why the λ-calculus is so important nowadays in computation is be-
cause of the Church-Turing hypothesis. This states that the Turing machine
(which is a mathematical model of a computer consisting of a memory tape
that can be changed) is as powerfull as a real computer. In other words this
is stated as: Every computation can be performed by a turing machine. The
lambda calculus is what is called turing complete, this means that the λ-calculus
can generate any turing machine and so every computable function can be ab-
stracted to a λ-function. For the interested reader there is an appendix added
where some basic fundamentals of a programming language are defined in terms
of the lambda-calculus, to give an intuition of the lambda calculus as a program-
ming language and thus that it is turing complete.

2

Contents

0.1 Abstract . 1
0.2 Introduction . 1

1 Theories 5
1.1 The lambda theory . 5

1.1.1 Free variables . 6
1.1.2 Theory of lambda . 7
1.1.3 Equality of theories . 11
1.1.4 Combinators . 11
1.1.5 Extensionality . 13
1.1.6 Consistency . 13
1.1.7 Lattice of theories . 14
1.1.8 Subterms . 14
1.1.9 Normal-form . 15
1.1.10 Solvability . 16
1.1.11 Hilbert-Post complete . 17
1.1.12 Labelled terms . 17

1.2 The theory K . 18

2 Bohm trees 21
2.1 Trees . 21
2.2 Relations on Bohm-like trees . 25
2.3 Bohm transformations . 26

3 Models 28
3.1 Combinatory logic and algebra’s 28

3.1.1 Combinatory logic . 28
3.1.2 Combinatory algebra’s . 31

3.2 Term model . 35
3.3 Syntactical models . 38
3.4 Scott’s model . 39

3.4.1 Complete partial orders 39
3.4.2 Reflexive cpo’s as models 43
3.4.3 Projective limit . 45
3.4.4 Projections . 45

3

3.4.5 Scott’s model . 47
3.4.6 Theory of Scott’s model 49

4 Conclusion 54

Appendices 55

A Lambda calculus and programming languages 56
A.1 Boolean logic . 56
A.2 Conditional statements . 57
A.3 Numbers and arithmetic . 57

4

Chapter 1

Theories

1.1 The lambda theory

The λ-theory is a formal language of equality representing a more abstract way
to define functions and how they behave, i.e. we have terms (in our case they
represent functions or input to functions) and equality between those terms
together with notions like application. This is a general way to define both the
composition of functions as applying an argument to a function. In particular
we look at the untyped λ-calculus, this means that a function can take any sort
of input. In mathematics a function is always from an object in a set/category
to another object in (maybe) another set/category, while in the λ-calculus it
doesn’t matter where you start or end.
Before we give the definition of the λ-theory, we must introduce lambda terms.
These will represent the abstract functions. There are 3 sort of terms: variables,
functions and application of terms. The variable is very natural, the meaning
of application is explained further but can be seen as composition of functions.
A mathematician usually writes a function as f(x) = ... or x 7→ As the
λ-calculus tries to formalize it more abstractly another notation is used: λx.....
So a function f(x) = 5 ∗ x is represented as λx.(5 ∗ x).

Definition 1. The set of λ-terms over a set V ar, is denoted by ∆ and is defined
as follows:

� x ∈ V ar =⇒ x ∈ ∆

� Abstraction: x ∈ V ar,M ∈ ∆ =⇒ (λx.M) ∈ ∆

� Application: M,N ∈ ∆ =⇒ (MN) ∈ ∆

where V ar is a set with elements named variables.

The set of variables can be uncountable, but in most definitions it will be
countable since a function usually has a finite or countable number of variables.
Variables are mostly called x, y, x1, x2, The terms we just defined are the
functions.

5

Notation 1. � If a term has multiple input variables x1, ..., xn, then instead
of writing λx1.(λx2.(...λxn)...) we write: λx1x2...xn.

� The application is always left-associative when no brackets are included,
so MNP = ((MN)P)

The following example shows that application is in general not associative.

Example 1. Let M ≡ λxy.x,N ≡ P ≡ λx.x, then:

(MN)P = (λyx.x)(λx.x) = λx.x

M(NP) = (λxy.x)(λx.x) = λy.(λx.x) = λyx.x.

As (MN)P is a ’function’ with 1 input variable and M(NP) is a ’function’ with
2 input variables they aren’t the same.

1.1.1 Free variables

As we will see, before we can properly define the λ-theory, we need the concept
of a free variable. A variable x is free in a term M if it isn’t in a scope λx in
M , more formally:

Definition 2. The set of free variables of a term M, denoted by FV (M), is
defined as follows:

� FV (x) = x

� FV (λx.M) = FV (M)− {x}

� FV (MN) = FV (M) ∪ FV (N)

Definition 3. A term M ∈ ∆ is closed if it has no free variables, i.e.

FV (M) = ∅

The set of closed lambda-terms is denoted by ∆0. A closed term is sometimes
called a combinator.

Example 2. � λx.xy isn’t closed since FV (λx.xy) = {y}, so y is free and
x is bounded

� λxy.xyx is closed, both x and y are bounded

� If we look at xλx.x, x is both bounded and free. Although this is valid
notation, if we encouter something like this we will replace an x by another
variable.

6

1.1.2 Theory of lambda

Now we formally define the equational theory: the λ-theory, discuss the substi-
tution of terms and introduce some special λ-terms with a gap, called contexts.

Remark 1. By a(n equational) theory over the term-set ∆, we mean a set
together with an equivalence relation, which in our case is written as = and if
T1,T2 are theories, we denote T1 +T2 as the theory containing all the equalities
that can be derived from using equalities from both theories. More formally
we mean that the equivalence theory of T1 + T2 has as relation the minimal
equivalence relation that contains both relations corresponding to T1 and T2.

Definition 4. A λ-theory (over ∆) is an equational theory consisting of the
following axioms:

M [x := N] = (λx.M)N (1.1)

λx.M = λy.M [x := y] if y 6∈ FV (M) (1.2)

M = N =⇒ LM = LN (1.3)

M = N =⇒ ML = LN (1.4)

M = N =⇒ λx.M = λx.N (1.5)

with M,N,L ∈ ∆, x, y ∈ V ar and where the square brackets, in M [x := N],
means the substitution of x by N in M which is defined as follows:

� x[x := N] = x

� y[x := N] = y if y 6= x

� (λy.M1)[x := N] = λy.(M1[x := N]) if y 6∈ FV (M)

� (M1M2)[x := N] = (M1[x := N])(M2[x := N])

The first axiom is called the α-conversion. It states that when you apply a
term N to a term M with a bound variable x (as outer variable), it actually
means that we replace x by N in M . So application can mean composition or
applying an input to a function. For example:

� Let f = λx.(x2) and y = 4, then fy = (λx.x2)4 = 42 = 16 = f(4).

� Let f = λx.(x+5) and g = λy.(y+3), then fg = (λx.(x+5))(λy.(y+3)) =
(λy.y + 3) + 5 = λy.(y + 8) = f ◦ g

Notice that in the lambda calculus as we defined it, there are no notions of
squared and addition of numbers. This can be defined properly but we won’t
do this, but this is the way how you look at application.
The functions f(x) = x3 + 2 and f(y) = y3 + 2 are actually the same, but they
have a different syntax. The second axiom, called β-conversion, ensures that
they are the same.
The third condition says when functions are equal and the same argument is

7

applied to both of them, their output will produce the same output. It is like
f(x) and f(y) in the previous example. The fourth condition states the same but
now functions and arguments are swapped. So when arguments are equal and
we apply them to the same function, both of them also give the same output.
The last condition states that when given equal terms, when we turn them into
functions, their functions are also equal. An example of this is the following:

Example 3. Let M = (x+ y)2 and N = x2 + y2 + 2xy. Both of them are equal
and if we define functions f = λx.((x+ y)2) and g = λx.x2 + y2 + 2xy, then by
the last axiom those are also equal and if we apply it another time we have that
λxy.(x+ y)2 = λxy.(x2 + y2 + 2xy).

The following examples of application and substitution are given in terms of
only the λ-terms instead of more concrete functions f : Rn → Rn like given in
previous examples:

Example 4. � ((λxy.xyy)[x := N])[y := M] = (λy.(Nxx))[y := M] =
NMM

� (λx.xx)[x := λy.y] = (λy.y)(λy.y)

Notice that the third condition in the substitution needs that y is bounded.
If we don’t, this will allow the following result:

Example 5. We will show that every 2 terms are equal:

Proof. Define F ≡ λxy.yx, then FMN = ((λx(λy.yx))M)N = (λy.yM)N =
NM . Thus in particular for M = y,N = x we have Fxy = yx, but Fyx =
((λx(λy.yx))y)x = (λy.yy)x = xx. And so we have xx = yx, from this equality
we can derive any equation. If xx = yx, then the application with another term
should be equal, if we apply λpq.p to both sides we have:

x = (λpq.p)xx = (λpq.p)yx = y

This is then true for all x, y ∈ V ar which clearly can’t.

Remark 2. Notice that we defined ”a λ-theory”. The term ”the λ-calculus” or
”the theory λ” is used for the minimal λ-theory (over a set of terms).

We now have defined the equality of terms. These rules can also be used
to give a proof whether terms are the same. The equality actually means
semantic equality (the mean the same), but there is also syntactic equality
(they look complete the same). This we denote by M ≡ N . An example is
λx.(λy.(xy)) ≡ λxy.(xy). We introduce this to define certain terms, so it’s
purely notational.
The next definition of convertibility is a common notation found in books, we
therefore introduce it, but we will only use the notation when terms are con-
vertible.

8

Definition 5. � M,N ∈ ∆ are convertible if the axioms of the λ-theory can
derive their equality. If so, we write λ `M = N as is done in logic.

� If a λ-theory T derives the equality M = N we denote it by T `M = N .

As the application isn’t associative, it is also not commutative:

Remark 3. The application need not be commutative:

Proof. Take M ≡ λx.xy and N ≡ λz.(λu.uz), then we have:

MN = (λz.(λu.uz))y = λu.uy

NM = λu.(u(λx.xy))

These aren’t equal, apply P ∈ ∆ to both sides:

MNP = (λu.uy)P = Py

NMP = (λu.(u(λx.xy)))P = P.(λx.xy)

The next proposition says that substitutions don’t always commute.

Theorem 1. (”Substitution lemma”) Take M,N,L ∈ ∆, x 6= y such that
x 6∈ FV (L), then:

M [x := N][y := L] = M [y := L][x = N [y := L]]

Proof. We do this by induction on the structure of M :

� M is a variable: If M ≡ x, then both sides equal N [y := L], if M ≡ yn
then both equal L. If M ≡ z with z 6∈ {x, y}, then both sides equal z

� M is an abstraction: Let M = λz.M1, then we have:

M [x := N][y := L] ≡ (λz.M1)[x := N][y := L] ≡ λz.(M1[x := N][y := L])

Now apply the induction hypothesis on (M1[x := N][y := L]), thus we
have:

M [x := N][y := L] ≡ λz.(M1[y := L][x = N [y := L]])

≡ (λz.M1)[y := L][x = N [y := L]]) = M [y := L][x = N [y := L]]

� M is an application: Let M = (M1M2), then we have:

(M1M2)[x := N][y := L] ≡ (M1[x := N][y := L])(M2[x := N][y := L])

By the induction hypothesis we have:

(M1M2)[x := N][y := L] ≡ (M1[y := L][x = N [y := L]])(M2[y := L][x = N [y := L]])

≡ (M1M2)[y := L][x = N [y := L]]

9

Thus it isn’t always commutative because it can happen that more terms
have the same bounded variables and thus we must first substitute them, but
on the other hand the equality of terms is preserved under substitution:

Theorem 2. � M = M ′ =⇒ M [x := N] = M ′[x := N]

� N = N ′ =⇒ M [x := N] = M [x := N ′]

� M = M ′, N = N ′ =⇒ M [x := N] = M ′[x := N ′]

Proof. � M = M ′ =⇒ λx.M = λx.M ′ =⇒ (λx.M)N = (λx.M ′)N =⇒
M [x := N] = M ′[x := N]

� N = N ′ =⇒ (λx.M)N = (λx.M)N ′ =⇒ M [x := N] = M [x := N ′]

� Since M = M ′ =⇒ λx.M = λx.M ′ and N = N ′ we have (λx.M)N =
(λx.M ′)N ′, this is than M [x := N] = M ′[x := N ′]

Notice that the second theorem doesn’t imply:

N = N ′ =⇒ λx.x(λy.N) = λx.x(λy.N ′)

The reason for this is that we can’t define the term

M ≡ λx.x(λy.)

since this isn’t valid syntax, but a way to solve this is to introduce a context.
Informally this is a term with a gap we can’t fill.

Definition 6. A context C[] is defined as:

� x is a context

is a context

� if C1[] and C2[] are contexts, then λx.C1[] and C1[]C2[] are contexts.

Definition 7. Let C[] be a context and M ∈ ∆ a term. Then C[M] is the result
of placing M in the gaps. We write C[] ∈ ∆ to denote it is a context over ∆.

Example 6. Define C[] ≡ λx.(λy.[]) and M = xy. Then we have C[M] =
λx.(λy.M) = λx.(λy.xy)

Notice that in the example the variables suddenly became bounded while
before they were free.

Theorem 3. Let C[] be a context. Then N = N ′ =⇒ C[N] = C[N ′]

Proof. We do this by induction on the structure of the context:

� If C[] = x, then C[N] = x = C[N ′]

10

� If C[] = [], then C[N] = N = N ′ = C[N ′]

� If C[] = λx.C1[], then C[N] = λx.C1[N]
I.H.
= λx.C1[N ′] = C[N ′]

� If C[] = C1[]C2[], then C[N] = C1[N]C2[N]
I.H.
= C1[N ′]C2[N ′] = C[N]

Notice that the converse of this theorem is trivially not true because we can
take C[] a variable that isn’t used in N or N ′.

1.1.3 Equality of theories

Since λ-theories are (mathematical) structures we can define an isomorphism
between them. Let T1,T2 be theories with term-sets ∆1,∆2.

Definition 8. T1,T2 are equivalent if there are mappings

()1 : ∆1 → ∆2 : M 7→ (M)1 ≡M1

()2 : ∆2 → ∆1 : M 7→ (M)2 ≡M2

such that: Ti ` M = N ⇐⇒ Tj ` Mj = Nj where Mi,j ≡ (Mi)j and
M,N ∈ ∆i with {i, j} = {1, 2}.

1.1.4 Combinators

We now introduce some special λ-terms (closed terms) which will be used later
to discuss models, but they also have the property that every closed term can
be generated by the application of (some of) these combinators.

Definition 9. � I = λx.x

� K = λxy.x

� S = λxyz.xz(yz)

� Ω = (λx.xx)(λx.xx)

� 1 = λxy.xy

Notice that I = SKK because SKKN = KN(KN) = N for any term
N ∈ ∆.

Definition 10. The set of terms generated by δ ⊂ ∆, denoted as δ+, is the least
set δ ⊂ δ+ such that it is closed under application, i.e. ∀M,N ∈ δ+ : MN ∈ δ+.

Definition 11. A collection of terms δ ⊂ ∆ is a basis for µ ⊂ ∆ if every term
in µ has an equivalent term in δ+, i.e. ∀M ∈ µ : ∃N ∈ δ+ : N = M .

Definition 12. δ ∈ ∆ is a basis if δ is a basis for the closed terms ∆0.

11

Here is an interesting result of the combinators K and S:

Theorem 4. {K,S} is a basis

Proof. We only give a sketch of the proof by giving an algorithm. Since we
only look at closed terms, we only need to consider terms of the form λx.M .
Notice that the product of closed terms is again a closed term, but if we apply
β-reduction we also have something of the form λx.M so it is the only case that
needs to be checked.

� for x 6∈ FV (M) we have: λx.M = KM

� λx.MN = λx.(((λx.M)x)((λx.N)x)) = S(λx.M)(λx.N)

Notice that the proof is a constructive proof, i.e. it gives a way to compute
the ”factorization” of a term in {S,K}:

Example 7. Take M = λxy.xyx.

Proof. We first work out λy.xyx:

λy.xyx = S(λy.xy)(λy.x)

= S(S(λy.x)(λy.y))(Kx)

= S(S(Kx)I)(Kx)

We can’t work this further out because a.t.m. x isn’t bound, so we now look at
M :

λxy.xyx = λx.(S(S(Kx)I)(Kx))

= S(λx.S(S(Kx)I))(λx.Kx)

= S(λx.S(S(Kx)I))(S(λx.K)(λx.x))

= S(λx.S(S(Kx)I))(S(KK)I)

We now simplify λx.S(S(Kx)I):

λx.S(S(Kx)I) = S(λx.S)(λx.S(Kx)I)

= S(KS)(S(λx.S(Kx))(λx.I))

= S(KS)(S(λx.S(Kx))(KI))

= S(KS)(S(S(λx.S)(λx.Kx))(KI))

= S(KS)(S(S(KS)(S(KK)I))(KI))

And thus our final result is:

S(S(KS)(S(S(KS)(S(KK)I))(KI)))(S(KK)I)

12

1.1.5 Extensionality

In algebra (group theory) the cancelling law, by the use of inverses, is very
much used. We now define an equivalent notion for λ-theories, this is called
extensionality. The reason this is axiom will be introduced is because of the fact
that a function can be defined, instead of a formula, by fixing all the function
values.

Definition 13. � A λ-theory is called extensional if

(∀x 6∈ FV (MN) : Mx = Nx) =⇒ M = N.

� The theory λ+ ext is the λ-theory extended with this rule.

� A λ-theory has included the η-rule if

∀x 6∈ FV (MN) : λx.Mx = M.

� The theory λη is the λ-theory extended with this rule.

Although η and ext are different, they can both prove the other one:

Theorem 5. (”Curry”) The theories λ+ ext and λη are equivalent

Proof. If x 6∈ FV (M), then by extensionality we have λx.Mx = λM . Therefore
λ+ ext ` η: (λx.Mx)x = Mx
For x 6∈ FV (MN) we have Mx = Nx =⇒ λx.Mx = λx.Nx then by η we have
M = N . Therefore λη ` ext.

1.1.6 Consistency

A trivial example of a lambda theory is a theory such that all closed terms are
equivalent. This is of course not interesting and not usefull. A theory which
doesn’t satisfy this property is called consistent:

Definition 14. A theory T (a set of equations) is called consistent if it doesn’t
prove every closed equation. If the theory is consistent then we denote it by
Con(T). If T is a set of axioms and we extend λ by it, write Con(T) for
Con(λ+ T).

When discussing normal-forms, we show that λη is consistent and notice that
by adding another axiom, we introduce more equalities. Thus if λη is consistent,
then λ is certainly consistent since an extension of it is.

Sometimes a theory T is consistent, but if one equality M = N is added, it
can happen that T + M = N becomes inconsistent. We then say that M and
N are incompatible and we write M#N . An example of this case:

13

Example 8. Assume λ+K = S. Thus for X,Y, Z ∈ ∆ we have:

KXY Z = SXY Z =⇒ XZ = XZ(Y Z)

Take X ≡ Z ≡ I, we then have I = Y I = Y . Therefore

λ+K = S `M = I = N

for all terms M,N . Thus λ+K = S isn’t consistent.

1.1.7 Lattice of theories

The set of lambda theories λT (over a set of terms ∆) can be natural ordered
such that it forms a complete lattice. This lattice is very large, so there are
many λ-theories, but we won’t prove this. In [11] it is shown that a specific
class of λ-theories already has cardinality 2N.

Theorem 6. The operation ∧ defined by T1 ∧ T2 := T1 ∩ T2 is a infimum.

Theorem 7. The operation ∨ defined by T1 ∨ T2 := T1 + T2 is a supremum.

This showed that the set indeed forms a lattice and it is indeed a complete
one because the union or intersection of (arbitrary number of) subsets is well-
defined.

The minimal lambda theory, the bottom element in λT , is usually denoted by
λβ (in this thesis, as mentioned earlier it is just denoted λ) and the top element
is the (inconsistent) theory that equates all terms. Although the top element
isn’t interesting, the bottom is. A longstanding open problem is whether or
not their exists an extensional model of the λ-theory λβ . In the paper [1] some
properties about this lattice are found.

1.1.8 Subterms

We now introduce subterms to define a normal-form of a term: A term N is a
subterm of M if N appears in M .

Definition 15. The set of subterms of M , denoted by Sub(M), is defined as
follows:

� Sub(x) = {x}

� Sub(λx.N1) = Sub(N1) ∩ {λx.N1}

� Sub(N1N2) = Sub(N1) ∩ Sub(N2) ∩ {N1N2}

Example 9. � λy.y is a subterm of λx.(M.(λy.y))

� λy.y isn’t a subterm of λxy.x

14

1.1.9 Normal-form

The normal-form of a term is an equivalent term in which no further computing
can be performed, so it is like a minimal term.

Definition 16. We say that a term is in β-normal form (β-nf or nf) if it has
no subterm (λx.R)S. And a term M has a β-nf if there exists a term N in nf
such that N = M .

Recall the β-reduction: M [x := N] = (λx.M)N . So if a term is in nf , it
means that all possible substitutions are applied.

When working in λη we also can define:

Definition 17. We say that a term is in βη-normal form (βη-nf) if it has no
subterm (λx.R)S or (λx.Rx) with x 6∈ FV (R).

Like nf it is based on the η-reduction: λx.Mx = M for x 6∈ FV (MN).

Example 10. Examples of β-nf

� KI has a nf, because KI = (λxy.x)(λx.x) = λy.(λx.x) = λy.I and λy.I
is in nf. KI itself isn’t in nf, set R = λy.x and S = λx.x.

� Ω ≡ (λx.xx)(λx.xx) doesn’t have a nf because when applying the β-reduction
we always get back Ω so we can repeat the β-reduction infinitly many times
and it will never be in a normal form.

Example 11. Examples of βη-nf

� K and S are βη-nf

� λx.x(λz.xz) is not in βη-nf but has as βη-nf: λx.xx

The following proposition links both normal forms:

Theorem 8. (”Curry”) M has a βη-nf if and only if M has a β-nf

Theorem 9. If M,N are different β-nf ’s (resp. βη-nf ’s) then λ 6` M = N
(resp. λη 6`M = N)

Now we can easily proof that λ and λη are consistent.

Proof. We have λη 6` K = S because their βη-nf’s are different and so λη is
consistent. And since every βη-nf is a β-nf, we repeat the argument for λη.

Another normal form is the head normal form (=hnf):

Definition 18. A term M is a hnf if M ≡ λx1...xn ·xM1...Mm and a term M ′

has a hnf if there is a hnf M such that M = M ′.

15

1.1.10 Solvability

A solvable term is a term that has an inverse for the application:

Definition 19. � A closed term M ∈ ∆0 is solvable if there are terms
N1, ..., Nn ∈ ∆ such that MN1 · · ·Nn = I.

� A term M ∈ ∆, with FV (M) = {x} is called solvable if λx.M is solvable.

� A term that isn’t solvable is called unsolvable.

Notice that in the definition solvable is defined such that there can be mul-
tiple terms Ni. If we would say that there is exists only 1 term N such that
MN = I then N wouldn’t have a nf if for example N ≡ λxyz.xyz because
when only applied 1 term only the x would be substituted but not the other 2
variables and a function of multiple arguments can’t equal the identity function
of 1 argument but if we allow n > 1 then we have:

((λxyz.xyz)(λx.x)) (λy.y) = (λyz.((λx.x)yz))(λy.y)

= (λyz.(yz)(λy.y)

= (λz.((λy.y)z)

= λz.z

Example 12. � S is solvable since SIII = IIII = I

� Ω is unsolvable since if we apply N1, ..., Nn to Ω we can’t simply it further.
The reason is because of non-associativity and that Ω it is not of the form
λx.N , thus we can’t use β-reduction.

The following theorem gives a nice characterization of solvability:

Theorem 10. (”Wadsworth”) M is solvable iff M has a hnf

The following notion of equivalence is used later in the text:

Definition 20. Let M,N be hnf’s, i.e.:

M ≡ λx1...xn · yM1...Mm

N ≡ λx1...x
′

n · y
′
M1...M

′

m

then M and N are equivalent, denoted by M ∼ N , if

y ≡ y
′
, n−m = n

′
−m

′

Arbitrary terms M,N are equivalent if both are unsolvable or both are solvable
and their hnf’s are equivalent.

16

1.1.11 Hilbert-Post complete

We now define the notion of a Hilbert-Post (HP) complete theory, that is a
maximally consistent theory:

Definition 21. An equational theory T is called Hilbert-Post (HP) complete if
for every term we have: T `M = N ⇐⇒ Con(T +M = N).

So an equational theory is maximally consistent if every equality of terms is
added when it doesn’t make the theory inconsistent.

Example 13. λ is clearly not HP, since otherwise we would have that all λ-
theories (over the same term set) are equivalent. This isn’t the case because the
minimal λ-theory λ doesn’t satisfies the extensionality axiom by definition.

Lemma 1. The union T of a chain T1 ⊂ T2 ⊂ ... of consistent theories, is
again consistent

Proof. In logic there is also a notion of consistency and this is a standard proof
in it. You assume it isn’t consistent, thus we can derive a contradiction M = N .
This derivation only consists of a finite steps/formulas. Thus the set of those
formulas is finite. Thus there is a Ti such that those formulas are included in
it. But since Ti is consistent, this is a contradiction.

Theorem 11. Every λ-theory T can be extended to a HP-complete λ-theory

Proof. Set P = {T0 ⊇ T|con(T0)}. This set isn’t empty because T ∈ P. Take a
chain T0 ⊆ T1 ⊆ ... in P. As LT is a complete lattice there exists an upperbound
K =

⋃
i∈NKi. Clearly T ⊆ K and thus we only have to check that K is

consistent, but this follows from previous lemma. Since K ∈ P we can thus
apply Zorn’s lemma and therefore P has a maximal element T1. We claim
this is HP-complete because if this isn’t the case, then there exists an equality
M = N such that (T1 + [M = N])+ is consistent, but this contradicts the
maximality of T1 ∈ P.

1.1.12 Labelled terms

A variant on the terms is called the labelled λ-terms, this we don’t need but
there is a subset that we will use: ∆ ⊥. The only difference is that to the
alphabet the constant ⊥ and is also a term on itself. The reduction rules added
to the ’standard’ rules are:

� ⊥M =⊥

� λx. ⊥=⊥

� ⊥ [x := N] =⊥

We introduce this because once we introduce the Scott-model, some nice prop-
erties follow and this also gives the possibility to create ’empty’ nodes on the
Bohm tree

17

1.2 The theory K

In this section we describe the theory K and its unique HP-complete extension
K∗. The reason why we study this is because it turns out to be the theory
corresponding to Scott’s model.

The theory K consists of the minimal lambda theory where alle unsolvable
(closed terms) are equal, these terms represents the notion of undefined.

Definition 22. � K0 = {M = N : M,N ∈ ∆0 unsolvable}

� K = K+
0

If a theory contains K, we say it is sensible.

Definition 23. We define K∗ to be:

K∗ = {M = N |M,N ∈ ∆0,M ∼s N}

where M ∼s N is true if for every context C we have

C[M] solvable ⇐⇒ C[N] solvable.

The following lemma proves that K∗ is extensional:

Lemma 2. K∗η `M = N =⇒ M ∼s N

Proof. We prove this by induction on the length of the proof of M = N , with
this technique we mean the following:
Assume K∗η ` M = N , then there exist a derivation using the axioms of λ,
or they are equal if C[M] is solvable which is equivalent to saying that C[N]
is solvable. Then induction is done on the number of steps (derivation rules)
needed to prove this. For example, λ ` yz = ((λx.x)y)z, this is proven by
first applying the β-reduction to get y = (λx.x)y and continuing with the rule
M = N =⇒ ML = NL. So this proof consists of 2 steps. The base case
consists of first showing that the statement holds for terms that are equal by
definition, because they need zero steps to show it. Then, in the induction step
we look at the last axiom/step needed to show it. Afterwards we apply the
induction hypothesis on the proof needed to show the previous derivation.

� If M = N is an axiom in λη, then once C[M] is solvable, there exists
x1, ..., xn ∈ V ar and P1, ..., Pm ∈ ∆ such that

(λx1...xn · C[M])P1...Pm = I,

thus we also have (λx1...xn · C[N])P1...Pm =η I. Therefore C[N] is βη-
solvable. But solvability and βη-solvability are equivalent, thus C[N] is
solvable.

� If M = N is an axiom in K∗ then we are immediatly done by definition
of K∗.

18

� Assume the last step uses the axiom M = N =⇒ λx.M = λx.N . Then
by induction we have M ∼s N , thus in particular for contexts of the form
C[λx.[]].

� Assume the last step uses the axiom M = N =⇒ LM = LN . Then
by induction we have again M ∼s N . Thus also for contexts C[([]L)] and
C[(L[])].

� If transitivity was last used, so (M = L,L = N) =⇒ M = N then
by induction M ∼s L and L ∼s N and thus C[M] solvable ⇐⇒ C[L]
solvable ⇐⇒ C[N] solvable.

Corollary 1. K∗ is extensional

Proof. As K∗ is a λ-theory, we have that λ + ext = λη. But by the previous
lemma we have K∗η ⊆ K∗. And the converse is always true, so K∗η = K∗.

Theorem 12. K∗ is consistent

Proof. Since I is solvable and Ω is unsolvable, we are done by the previous
lemma.

The following shows that K∗ is the maximal consistent theory consisting of
closed terms that contains K:

Theorem 13. Con(K +M = N) =⇒ M ∼S N

Proof. Assume M 6∼S N , then there exists a context C[] such that:

(λx1...xn · C[M])(P1...Pn) = I

(λx1...xn · C[N])(P1...Pn) 6= I

But if we assume that M = N then C[N] = C[M] and thus

(λx1...xn · C[M])(P1...Pn) = (λx1...xn · C[N])(P1...Pn),

thus I is equal to an unsolvable term and this can only happen when the theory
K +M = N is inconsistent.

Corollary 2. K ⊂ K∗

Proof. This is a direct consequence of the previous theorem, because if we take
M = N in K, then Con(K +M = N) = Con(K) and K is consistent because
K and S are both solvable and λ doesn’t derives it, so K 6` K = S.

Corollary 3. A consistent theory T, consisting of closed terms, that extends
K, has K∗ as an extension

19

Proof. This is exactly what the previous theorem says. For every M = N , that
T derives, we have Con(K + M = N) because K + M = N ⊂ T and T is
consistent. Thus for every equation M = N we have that M ∼s N by the
previous theorem, thus it is by definition in K∗.

Corollary 4. K∗ is the unique HP-complete λ-theory extending K.

Proof. K∗ is consistent and by the previous corrolary every other consistent
theory containing K is a part of K∗.

20

Chapter 2

Bohm trees

In this chapter we introduce trees and in particular bohm trees, these represent
in a sense a parse tree of a term and will be usefull in studying the theory of
Scott’s model. We don’t go too deep in this as this isn’t the main part of this
thesis but we need it. More information is found in [3].

2.1 Trees

A tree can be formally defined as a set of finite sequences together with a relation
between these sequences.

Definition 24. The set of sequences, denoted as Seq, is defined as:

Seq := {< n1, ..., nk > |k, n1, ..., nk ∈ N}

The empy sequence is denoted as <> and the length of a sequence α =<
n1, ..., nk >∈ Seq is denoted by lh(α) = k. The concatenation of sequences
α =< n1, ..., nk >, β =< m1, ...,ml > is α ∗ β =< n1, ..., nk,m1, ...,ml >.
The ordering on sequences is defined as: α ≤ β iff k ≤ n and ni = mi for
0 < i ≤ k with α, β defined as above.

Definition 25. A tree is a set A ⊂ Seq such that:

� α ∈ A, β ≤ α =⇒ β ∈ A

� α∗ < n+ 1 >∈ A =⇒ α∗ < n >∈ A

If a sequence α is in A we call α a node of the tree.

The idea behind this definition is that every sequence represents a node of
the tree and if the length of a sequence is k, the corresponding node is at depth
k. Although a tree doesn’t consists of only nodes, but also with connections
so that we know which nodes are children of a certain node, called the parent.
This relation is enforced since there is a partial order on Seq and thus on A. If
α ≤ β and lh(α) < lh(β), we have that β is a child of α.
An example of a tree is given below:

21

Example 14. If A consists of <>,< 0 >,< 1 >,< 0, 0 >,< 0, 1 >, then the
tree is visualised as:

<>

< 0 >

< 0, 0 > < 0, 1 >

< 1 >

As a tree without any labels on the nodes isn’t very interesting we introduce:

Definition 26. Let Σ be a set of symbols. A Σ-labelled tree is a partial map
φ : Seq → Σ such that:

Tφ = {α ∈ Seq : φ(α) is defined}

is a tree. We call Tφ the underlying (naked) tree. φ(α) is called the label at node
α.

Note that φ is partially defined since we only want labels on nodes that are
included in the tree. To visualise this labelled tree we represent the nodes not
by the sequence, but by the image of the sequence.

Example 15. Let Σ = {1, ..., 5} and let the tree A consists of sequences <>,<
1 >,< 2 >,< 1, 1 >,< 1, 2 >. Define φ as follows:

� φ(<>) = 1,

� φ(< 0 >) = 2,

� φ(< 1 >) = 3,

� φ(< 0, 0 >) = 4,

� φ(< 0, 1 >) = 5.

Then the Σ-labelled tree looks like:

1

2

4 5

3

For the remaining part of this chapter, fix T a λ-theory. We now define the
Bohm tree:

Definition 27. Take

Σ = {⊥} ∪ {λx1...xn · y|x1, ..., xn, y variables}

The Bohm tree of a λ-term M is the Σ-labelled tree such that:

22

� If M is unsolvable:

BT (M)(<>) =⊥
BT (M)(< k > ∗α) is undefined.

� If M is solvable with principal hnf λx1...xn · yM0...Mm−1:

BT (M)(<>) = λx1...xn · y

BT (M)(< k > ∗α) =

{
BT (Mk)(α) if k < m

undefined if k ≥ m

So for every unsolvable term, its Bohm tree is the tree with only 1 node with
label ⊥.

Example 16. Let M = λxyz · xx(yxz), then its corresponding tree and Bohm
tree are:

<>

< 0 > < 1 >

< 1, 0 > < 1, 1 >

λxyz · x

x y

x z

If terms are equal, we expect them to have the same Bohm tree:

Theorem 14. M = N =⇒ BT (M) = BT (N)

Proof. Suppose M = N and let α be a sequence. We show by induction on
lh(α) that BT (M)(α) = BT (N)(α). We are then done since if the nodes with
their labels match (also undefined nodes) then the functions are equal.
Suppose lh(α) = 0. Thus α =<>. If M is unsolvable, then N is to. Thus by
definition both labels are ⊥. If both are solvable then both their top node are
labelled as λx1...xn · y if we write M and N as:

M = λx1...xn · yM0...Mm−1

N = λx1...xn · yN0...Nm−1

with Mk = Nk for k < m. Now suppose lh(α) > 0, thus we can write α as
< k > ∗α′. If M is unsolvable then both nodes are undefined. If both are
solvable, take their hnf’s as in the lemma. If k ≥ m, then both nodes are
undefined. If k < m, we have:

BT (M)(α) = BT (M)(< k > ∗α′) = BT (Mk)(α′)

BT (N)(α) = BT (N)(< k > ∗α′) = BT (Nk)(α′)

And since lh(α′) < lh(α) we are done by induction.

23

Instead of looking at a tree with a Σ-labelled tree, we can also insert at each
node the number of successors:

Definition 28. Let Σ be a set of symbols. A Σ-labelled tree is a partial map
φ : Seq → Σ× N such that:

� If φ(σ) is defined and if τ ≤ σ, then φ(τ) is defined.

� If φ(σ) =< a, n > then for every k ≥ n we have that φ(σ∗ < k >) is
undefined.

We call Tφ = {<>} ∪ {σ ∈ Seq|σ = σ
′∗ < k >, φ(σ

′
) =< a, n >, k < n} the

underlying (naked) tree.

From now on when we talk about Bohm trees, we mean effective Bohm trees:

Definition 29. The effective Bohm tree of a term M, denoted by BT e(M), is
the partially Σ1 labelled tree defined as follows:

� If M is unsolvable:

BT e(M)(σ) is undefined, ∀σ.

� If M is solvable with principal hnf λx1...xn · yM0...Mm−1:

BT e(M)(<>) =< λx1...xn · y,m >

BT e(M)(< k > ∗σ) =

{
BT e(Mk)(α) if k < m

undefined if k ≥ m

Note that the only differences between BT (M) and BT e(M), are:

� The label ⊥ is replaced by an empty label

� To each node we add an extra number.

Thus BT (M) and BT e(M) are isomorphic trees. From now on we only work
with effective Bohm trees instead of Bohm trees. We therefore (always) write
BT (M) := BT e(M) and use Bohm tree for effective Bohm tree.
Sometimes, the following notion is needed:

Definition 30. � A Bohm-like tree is a partially Σ-labelled tree as in the
definition of the bohm tree.

� The set of Bohm-like trees is denoted by B

Notice that every Bohm tree is a Bohm-like tree.
We introduce certain subtrees:

Definition 31. Let A ∈ B. For k ∈ N we define:

Ak(α) =

{
A(α) if lh(α) < k

undefined else

24

To each (finite) Bohm-like tree we can associate a term MA (or sometimes
denoted M(A)) as follows:

Definition 32. � If A =⊥, take MA ≡ Ω.

� If A = λx1, ..., xn · y, take MA ≡ A = λx1, ..., xn · y.

� If A = λx1, ..., xn · y, take MA ≡ A = λx1, ..., xn · yMA1
...MAk .

Corollary 5. For every finite A ∈ B we have BT (M(A)) = A.

We use following notation:

Notation 2. � BT k(M) ≡ (BT (M))k

� M (k) ≡M(BT k(M))

Theorem 15. BT (M (k)) = BT k(M)

Proof.
BT (M (k)) = BT (M(BT k(M))) = BT k(M)

2.2 Relations on Bohm-like trees

In this chapter we define some relations between Bohm-like trees. The defini-
tions introduced here are characterizations and are defined different in [3], there
they make use of infinite η-expansions.

Definition 33. Let A,B ∈ B.

� A ⊆k B ⇐⇒ at depth k, the subtree of A is a subtree of B.

� A =k B ⇐⇒ their subtrees are equal to atleast depth k.

� Aη ⊆ B ⇐⇒ ∀k ∈ N : ∃A′ : [A′ →η A,A
′ ⊆k B]

� Aη ⊆η B ⇐⇒ ∃A′, B′ : [A′ →η A,B
′ →η B,A

′ ⊆k B′]

� A ≤η B ⇐⇒ ∀k ∈ N : ∃A′ : [A′ →η A,A
′ =k B]

When dealing with terms we usually want to look at their Bohm-trees, so the
following notation is introduced:

Definition 34. Let M,N ∈ ∆

� M .η N ⇐⇒ BT (M) ≤η BT (N)

Definition 35. P ∈ ∆ ⊥ is an approximation normal form (anf) for M ∈ ∆ ⊥
if:

� BT (P) ⊆ BT (M)

� P is β ⊥-nf

The set of all anf’s for M ∈ ∆ ⊥ is denoted by C(M)

25

2.3 Bohm transformations

Bohm transformations are functions such that they correspond to a context
and will be helpfull in proving a result about solvability as it gives a way of
constructing unsolvable terms when applied to a Bohm-transformation. Proofs
in this section are only given in great steps since some are long proofs and the
results and definitions introduced here are only used to give 1 proof. The reader
is refered to [3] to see the details.

Definition 36. � A solving transformation is a mapping f : ∆ → ∆ such
that one of the following holds:

1. ∃x : ∀M : f(M) = Px

2. ∃x,N : ∀M : f(M) = P [x := N]

� A bohm-transformation is a finite composition of solving transformations

Let π be a bohm-transformation and we write Mπ for π(M).

Theorem 16. For every π there is a context Cπ[] such that for every M we
have: Mπ = Cπ[M]

Proof. By induction on the structure of π:

� Mπ = Mx, set Cπ[] = []x

� Mπ = M [x := N], set Cπ[] = (λx.[])N

� Mπ = π1 ◦ π2, set Cπ[] = Cπ1 [Cπ2 []]

Definition 37. Let F ⊂ ∆. Then π is called α − F-faithfull if for every terms
M,N ∈ F we have:

[M ∼α N ⇐⇒ Mπ ∼ Nπ] & [BT (M)(α) defined ⇐⇒ Mπ solvable]

Definition 38. Let F ⊂ ∆. Then F agrees up to α if for every M,N ∈ F we
have that their bohm-trees have the same nodes under α, i.e.

∀β < α : BT (M)(β) = BT (N)(β)

Theorem 17. If F agrees along α then there exists a pi that is α− F-faithfull

Proof. This is proved by induction on lh(α). For the base case and if M,N
are unsolvable the identity is choosen, otherwise there is a π0 constructed such
that it the image of the terms also agrees up to α and they also have the same
label at α. By these conditions (and one extra) it follows that we know how the
terms under π0 look like. Then a new π1 is introduced and then the induction
hypothesis (on π1 ◦ π0) says that there is a π2 and then π = π2 ◦ π1π0 proves
the result.

26

Theorem 18. If M is solvable and M 6∼ N then forall other terms P ∈ ∆ there
is a π such that Mπ = P and Nπ is unsolvable

Proof. By Wadsworth we can write M = λx1...xn · yM1...Mm. Since M 6∼ N
we assume N is unsolvable. Then π(Q) = Qx1...xn[y := λa1...am · P] does the
trick.

27

Chapter 3

Models

In this chapter we study the notion of models, we introduce a couple of defini-
tions of models and we discuss Scott’s model. We first introduce lambda models
and syntactical models, we show that to every λ-theory we can associate a λ-
model, called the term model. And then we introduce an order-theoretical con-
cept called a cpo and we look at the projective limits on cpo’s, because Scott’s
model D∞ will be a projective limit (and even a direct limit but we don’t in-
clude this). And we finally show that K∗, the theory introduced chapter 2.2 of
this thesis, is indeed the theory corresponding to D∞.
An equational theory says whether certain terms are equal, but not what they
mean. A model of a theory has the purpose of describing what it means. There-
fore a model can also be seen as a representation theorem of a lambda-calculus.

3.1 Combinatory logic and algebra’s

3.1.1 Combinatory logic

There is a variety of definitions of models introduced over the years, usually the
first definition is by the use of combinatory algebra’s. When other models are
defined we prove that we can associate a ”correct” combinatory algebra, but
before defining the combinatory algebra, we look at combinatory logic (=CL).
This is an equational theory that is equivalent with the λ-theory, when added
a couple of extra axioms.

Definition 39. The CL-terms, denoted by C, is defined as:

� x ∈ V ar =⇒ x ∈ C

� K,S ∈ C

� M,N ∈ C =⇒ (MN) ∈ C

The theory CL is then defined as:

28

Definition 40. The theory CL consists of following axioms:

KMN = M

SMNL = ML(NL)

M = N =⇒ LM = LN

M = N =⇒ ML = LN

Again with ”=” an equivalence relation and we write CL `M = N if the theory
of CL derives their equality.

Remark 4. As with the lambda calculus, if we don’t write any brackets we
assume left associativity.

The definition of closed terms, free/bounded variables are the same as in the
case of a λ-theory.

Lemma 3. Let I ≡ SKK, then IP = P for all P ∈ C

Proof. IP = SKKP = KP (KP) = P

As you may have noticed, the CL-terms only has application defined, but
not abstraction. We don’t need this since we can show that lambda abstraction
can be simulated by using only K and S.

Definition 41. Let x ∈ V ar and P ∈ C. Then we define λ∗x.P as:

� λ∗x.x = I

� λ∗x.P = KP if x 6∈ FV (P)

� λ∗x.PQ = S(λ∗x.P)((λ∗x.Q))

Notice that we could have expected this since K and S are a basis for the
(closed) terms. We can now also relate the λ and CL-terms:

Definition 42. We define CL : ∆→ C and λ : C→ ∆ by:

xCL = x xλ = x

cCL = c cλ = c

(MN)CL = MCLNCL (MN)λ = MλNλ

(λx.M)Cl = λ∗x.MCL Kλ = λxy.x

Sλ = λxyz.xz(yz)

with MCL = CL(M) and Mλ = λ(M)

We now define the set of axioms Aβ such that λ and CL+Aβ are equivalent:

Definition 43. Aβ consists of following axioms:

� K = λ∗xy.x

29

� S = λ∗xyz.xz(yz)

� λ∗xy.S(Kx)(Ky) = λ∗xy.K(xy)

� λ∗xy.S(S(KK)x)y = λ∗xyz.xy

� λ∗xyz.S(S(S(KS)x)y)z = λ∗xyz.S(Sxz)(Syz)

Before proving the equivalence of λ en CL + Aβ we first need some inter-
mediate result:

Lemma 4. (λ∗x.N)λ = λx.Nλ

Proof. We do this by induction on the structure of N . The base cases (vari-
ables and constant) are trivially true. So the only case left is when N is the
application of 2 terms. Let N ≡ N1N2 then (λ∗x.N)λ = (λ∗x.N1N2)λ =
(S(λ∗x.N1)(λ∗x.N2))λ. The induction hypothesis then gives us:

(λ∗x.N)λ = Sλ(λx.N1,λ)(λx.N2,λ)

= λz. (((λx.N1,λ)z)((λx.N2,λ)z))

By definition of substitution we have:

λz. (((λx.N1,λ)z)((λx.N2,λ)z)) = λz. (N1,λ[x := z]N2,λ[x := z])

= λz. (N1,λN2,λ[x := z])

= λx.N1,λN2,λ = λx.(N1N2)λ

Since the theory CL only has application and some special elements we can
naturally extend it to an algebraic structure, the following theorem shows that
we can therefore view a λ-theory as such algebraic structure:

Theorem 19. The theories λ and CL + Aβ are equivalent

Proof. The mappings that define the equivalence are choosen to be λ and CL.

� To show λ ` MCL,λ = M : This is done by induction on the structure
of M , the base cases are trivial since if we apply first λ and then CL
we get the same as we started with and those are always equal. And for
the application it follows immediatly from the induction hypothesis. For
M = λx.N we have:

M = λx.N →CL λ∗x.NCL →λ λx.NCL,λ

Thus by the induction hypothesis we have: λ ` NCL,λ = N . Thus by the
last equation of the lambda axioms we are done.

30

� To show CL + Aβ ` Mλ,CL = M : This is done by induction on the
structure of M , the base cases are trivial since if we apply first λ and then
CL we get the same as we started with and those are always equal. And
for the application it follows immediatly from the induction hypothesis.
For the constants K,S we have:

K →λ λxy.x = λx(λy.x)→CL λ∗x.(λy.x)CL = λ∗x.λ∗y.(x)CL = λ∗x.λ∗y.x = λ∗xy.x

And by the first equation in Aβ those are equal. For S we do the same
and then use the second equation in Aβ .

� To show: λ ` M = N =⇒ CL + Aβ ` MCL = NCL. Since we have to
check every axiom in λ, this is quite a lot of (non-interesting) computation.
The reader is therefore refered to the BOOK.

� To show: λ ` Pλ = Qλ =⇒ CL + Aβ ` P = Q. This follows from
previous point:

λ ` Pλ = Qλ =⇒ CL+Aβ ` Pλ,CL = Qλ,CL

But by the second point we then have:

CL+Aβ ` P = Pλ,CL = Qλ,CL = Q

� To show: CL+Aβ ` P = Q =⇒ λ ` Pλ = Qλ. We also refer you to the
book.

� To show: CL+Aβ `MCL = NCL =⇒ λ `M = N . This is the same as
the fourth point with the use of the first and previous point.

We first defined λ-calculus and then CL, but sometimes it is done in the
other order like in [5].

3.1.2 Combinatory algebra’s

Definition 44. An applicative structure is a set together with a binary opera-
tion, A = (X, ·).

Instead of writing x ∈ X we usually write x ∈ A.

Definition 45. A combinatory algebra is an applicative structure A = (X, ·)
such that there are elements k, s ∈ A such that kxy = x and sxyz = xz(yz).

Remark 5. As with combinators (in the term-sense) we have an identity ele-
ment i=skk.

Although we call it a algebra, it doesn’t have the nice properties of algebras:

Remark 6. Let A be a combinatory algebra that isn’t trivial, then:

31

� A isn’t commutative

� A isn’t associative

� A isn’t finite

Proof. � If A would be commutative, then ki = ik = k, thus a = kab =
kiab = ib = b for all a, b ∈ A

� If A would be associative, then (ki)i = k(ii), thus i = ii = k(ii)a =
((ki)ia) = λx.(λy.x)i)ia = (λy.i)ia = ia = a for all a ∈ A

� Take k0 = k and ki+1 = kki and these are all distinct.

Since we want to define models (in terms of combinatory algebra’s), we need
to be able to associate a set of terms to A:

Definition 46. The set of terms corresponding to A = (X, ·), denoted by T(A),
is inductively defined as:

� We introduce variables v0, v1, ... and add them to T(A), i.e. ∀i : vi ∈ T(A)

� To every element in A we associate a constant ca in T(A)

� The application of terms is a term, i.e. ∀M,N ∈ T(A) : (MN) ∈ T(A)

If A is a combinatory algebra, we extend T(A) with K and S.

Definition 47. Let A be a combinatory algebra. Then ∆(A) is the set of λ-
terms such that the constants ca, with a ∈ A, are added.

In the previous section we defined maps λ, CL between λ-terms and CL-
terms. We define the same maps between ∆(A) and T(A).

Let V ar be the set of these variables:

Definition 48. A valuation in A is a map ρ : V ar → A. The interpretation of
a term in T(A) under such ρ is defined as:

JxKAρ = ρ(x)

JcaKAρ = a

JMNKAρ = JMKAρ JNKAρ

For M ∈ ∆(A) we define the interpretation as

JMKρ = JMCLKρ

The following definition defines the equality on elements:

Definition 49. A �M = N if JMKAρ = JNKAρ is true for every valuation ρ.

32

Definition 50. A combinatory algebra A is weakly extensional if for M,N ∈
T(A) we have A �M = N =⇒ λx.M = λx.N for all x ∈ V ar.

We now have terms and equality between them, so we can define the theory
corresponding to it:

Definition 51. The theory of a combinatory algebra A is:

Th(A) := {M = N |A �M = N,M,N ∈ T(A)0}

Definition 52. A λ-algebra is a combinatory algebra A such that for all M,N ∈
T(A) we have:

λ `Mλ = Nλ =⇒ A �M = N

Theorem 20. A combinatory algebra A is a λ-algebra iff

� λ `M = N =⇒ A �M = N for all M,N ∈ ∆(A)

� A � Kλ,CL = K

� A � Sλ,CL = S

Proof. � Only if : We show ∀M ∈ ∆(A) : λ ` M = MCL,λ, Because then
we have:

λ `M = N =⇒ λMCL,λ = NCL,λ

=⇒ A �MCL = NCL

=⇒ A �M = N

and we showed the first point. So we show M = MCL,λ by induction on
the structure of M . As usual the base case and application are trivial, the
only one we show is that of abstraction. So let M ≡ λx.N .

MCL,λ = (λx.N)CL,λ = (λ∗x.N)λ

So it remains to show that (λ∗x.N)λ = λx.Nλ. We have proven this
already as a lemma to show the equivalence of λ and CL + Aβ and the
proof is exactly the same.
Instead of showing A � Kλ,CL = K (and the same for S) we show this for
an arbritrary CL-term A. Since λ `M = MCL,λ for M a λ-term and Aλ
is a λ-term we have λ ` Aλ = Aλ,CL,λ then the result follows as A is a
λ-algebra.

� If : As with the case Only if, we show an intermediate result ∀A ∈ T(A) :
A � ACL,λ = A because then we have:

λ ` Aλ = Bλ =⇒ A � Aλ = Bλ

=⇒ A � A = Aλ,CL = Bλ,CL = B

We show A � ACL,λ = A by induction on the structure of A. The base
cases are trivial as is the application. Let A ≡ λx.B.

33

Definition 53. A λ-algebra is called a λ-model if the Meyer-Scott axiom holds
in A:

(∀x ∈ A : ax = bx) =⇒ 1a = 1b

where 1 = S(KI)

Theorem 21. A λ-algebra A is a λ-model iff A is weakly extensional

Proof. � If : Since A is weakly extensional, we have:

(∀x : ax = bx) =⇒ λx.ax = λx.bx

And we have:

1=S(KI) = λyz.KIz(yz) = λyz.I(yz) = λyz.yz

Thus we have
1a = λx.ax = λx.bx = 1b

� Only if : If A = B then ∀x : (λx.A)x = A = B = (λx.B)x. As this is
for every x, we have by the Meyer-Scott that 1(λx.A) = 1(λx.B). But we
also have:

1(λx.A) = (λyz.yz)(λx.A) = λz(λx.A)z = λx.A

Theorem 22. A λ-algebra A is extensional iff A is weakly extensional and
satisfies I = 1

Proof. � Only if: Assume A is extensional and let A � M = N , thus
(λx.M)x = (λx.N)x, but by extensionality we then have λx.N = λx.M .
To show I = 1 we use 1xy = (λpq.pq)xy = xy = (Ix)y = Ixy. Thus by
extensionality we conclude 1 = I.

� If: By the previous theorem, we have that since A is weakly extensional,
it is a λ-model. Thus (∀x : ax = bx) =⇒ 1a = 1b. But because 1 = I we
have that 1a = Ia = a and also for b, thus we are done.

The following theorem shows that there is a connection between theories and
models:

Theorem 23. λ `M = N iff A �M = N for all λ-models A

Proof. This is proved in the following section.

Definition 54. A homomorphism between λ-algebras A1,A2 is a map φ : A1 →
A2 such that:

� φ(x · y) = φ(x) · φ(y)

34

� φ(k) = k

� φ(s) = s

Theorem 24. The category of lambda theories LT is equivalent with the cate-
gory of lambda algebras LA.

Proof. This is proved in section 2.5 of [13].

3.2 Term model

Given a λ-theory T we can construct a λ-model by using the fact that every
lambda-theory corresponds to a theory in CL. But there is also a trivial way
of associating a model to T, this is called the term model. Although at first
sight the term-model isn’t very interesting, it makes completeness of the lambda
calculus easy to prove and is therefore important.

Definition 55. The term model of T is A(T) = (∆
=T
, ·, [K] , [S]), where:

� M =T N ⇐⇒ T `M = N

�
∆
=T

contain the equivalence classes

� [x] is the equivalence class of x ∈ ∆

Theorem 25. A(T) is a combinatory algebra

Proof. This is clear since the only conditions that need to be checked are the
definitions of K,S.

Lemma 5. For M ∈ ∆ with FV (M) = {x1, ..., xn} we have:

JMKρ = [M [x1...xn = P1...Pn]]T

where [Pi]T = ρ(xi)

Proof. We first show this for A ∈ T by induction on the structure of A, the RHS
then becomes Aλ instead of A:

� A ≡ xi:

JAK = [ρ(xi)]

[Aλ[x1...xn = P1...Pn]] = [xi[xi = Pi]] = [ρ(xi)]

� A ≡ ca a constant with a ∈ A:

JAK = JcaK = [a]

[Aλ[x1...xn = P1...Pn]] = [(ca)λ]

And both are clearly in the same equivalence class.

35

� A ≡ BC:

JAK = JBCK = JBKJCK = [Bλ[x1...xn = P1...Pn]] [Cλ[y1...ym = Q1...Qn]]

= [BCλ[x1...ym = P1...Pm]]

= [Aλ[x1...ym = P1...Pm]]

So now we have proved it for CL-terms. By definition of interpretation for ∆
we have:

JMK = JMCLK

And by previous step this equals:

[MCL,λ[x1...xn = P1...Pn]]

But T `M = MCL,λ and thus we are done.

Theorem 26. T `M = N ⇐⇒ A = A(T) �M = N

Proof. � Only if :

T `M = N =⇒ ∀P1...Pn : T `M [x1...xn := P1...Pn] = N [x1...xn := P1...Pn]

=⇒ ∀P1...Pn : [M [x1...xn := P1...Pn]] = [N [x1...xn := P1...Pn]]

By applying the previous lemma we then have:

∀ρ : JMK = JNK (3.1)

This means that the term model derives it.

� If : As the model derives M = N , then in particular for ρ0(x) = [x]T they
are equal under their intepretation. We also have

JMKρ0 = [M]T

because of the previous lemma and thus we have:

[M]T = JMKρ0 = JNKρ0 = [N]T

But that is the definition of equality in T and thus we are done.

We are now ready to prove the following:

Theorem 27. A(T) is a λ-algebra

Proof. We prove this by the characterization of a λ-algebra so we only have to
show:

T ` Kλ,CL = K

and also for S.

36

Theorem 28. A := A(T) is a λ-model

Proof. Assume A derives ax = bx for every x. By definition of the term-model
we can write a = [M], b = [N], x = [z], thus

A � [Mz] = [M][z] = [N][z] = [Nz].

Since
T `M = N ⇐⇒ A = A(T) �M = N

we have: T ` Mz = Nz. And since A is a λ-theory we have λz.Mz = λz.Nz,
thus:

A ` 1M = λz.Mz = λz.Nz = 1N. (3.2)

Thus by the the same equation and by definition of N,M we can go back to the
term-model:

A � 1a = 1b (3.3)

Theorem 29. A(T) is extensional iff T ` ext

Proof. We use the same approach as the proof of previous theorem. The equality
in the term-model is equivalent to equality in the theory and thus we can easily
switch between them.

Theorem 30. Every λ-algebra A can be embedded into a λ-model

Proof. The approach goes as follows: we write A as a closed-term model and
clearly a closed-term model can be embedded into its open-term model which
is a λ-model.
Remember that Th(A) consist of the equality of the closed CL-terms, we define
Th(Ā) as the set containing the equality of closed λ-terms. We denote A0(T) as
the term-model that contains only equality of closed CL-terms. We then have
that

A0(Th(A))

is isomorphic with the substructure of A generated by k and s (this is thus the
image of the closed terms when mapped into A). Now define

Th(Ā) = {M = N |M,N ∈ T(A),M,N closed, A �M = N}.

Then A ∼= A0(Th(Ā)) ⊂ A(Th(Ā))

37

3.3 Syntactical models

A λ-model is defined to be an applicative structure with some axioms regarding
combinators, now we are going to define an equivalent notion of a λ-theory and
-model using the interpretation, instead of using combinators.

Definition 56. Let A = (X, ·) be an applicative structure. A syntactical in-
terpretation in A, denoted as JKρ, corresponding to a valuation ρ, is defined
as:

� JxKρ = ρ(x)

� JcaKρ = a

� JMNKρ = JMKρJNKρ

� Jλx.MKρ · a = JMKρ(x:=a)

� [∀x ∈ FV (M) : ρ1(x) = ρ2(x)] =⇒ JMKρ1 = JMKρ2

We call A = (X, ·, JK) as syntactical applicative structure.

Let A be a syntactical applicative structure, we denote:

A �M = N ⇐⇒ ∀ρ : JMKρ = JNKρ

Definition 57. � A is a syntactical λ-algebra if

λ `M = N =⇒ A �M = N (3.4)

� A is a syntactical λ-model if forall x we have

∀a : JMKρ(x:=a) = JNKρ(x:=a) =⇒ A � λx.M = λx.N (3.5)

Definition 58. A homomorphism between syntactical λ-algebras A1,A2 is a
map φ : A1 → A2 such that for all M ∈ ∆(A1) one has:

φJMKρ = JφMKφ◦ρ

The following proposition shows that every syntactical λ-model is indeed a
λ-algebra:

Theorem 31. If λ `M = N , then for every syntactical λ-model A we have:

A �M = N

Proof. Assume λ ` M = N , we prove this by showing that the interpretation
of both sides of the axioms in the λ-theory remain equal. The only non-direct
is the α-conversion, λ ` (λx.M)N = M [x := N]:

J(λx.M)NKρ = Jλx.MKρJNKρ = JMKρ(x:=JNKρ) (3.6)

So we need JMKρ(x:=JNKρ) = JM [x := N]Kρ. This is true, but for a proof I refer
you to page 103 in [3] as this are a lot of calculations.

38

To every syntactical λ-algebra we can easily associate a λ-algebra and vice
versa, but it is actually more general, the ’natural conversion’ is actually an
isomorphism that shows that the category of λ-algebras is isomorphic to the
category of syntactical λ-algebras and the models coincide.

3.4 Scott’s model

In this section we will discuss Scott’s model D∞ of the untyped lambda calculus,
the first non-trivial model. It will be a reflexive object defined using projective
(or inverse) limit and we show that it’s theory is independent of the starting
object. We will use cpo’s to define D∞ but there are more ways to do this, it is
also done using domains, lattices. Scott himself did the construction with the
use of lattices but later is was generalised. We use cpo’s since it is the most
abstract order-theoretic way to do Scott’s construction.

3.4.1 Complete partial orders

Let D = (D,≤), D1, D2, ... be posets.

Definition 59. A non-empty subset X ⊂ D is directed if every 2 elements in
X have an upperbound in X, i.e. ∀x, y ∈ X : ∃z ∈ X : (x ≤ z, y ≤ z).

Definition 60. D is a complete partial order (cpo) if:

� There is a least element in D, i.e. ∃ ⊥∈ D : ∀x ∈ D :⊥≤ x

� The supremum of every directed set X exists in D, this is denoted by
∨
X

We shall always denote the least element by ⊥ and it is called the bottom.

Definition 61. A map f : D1 → D2 is continuous if for every directed subset
X ⊂ D1 we have:

f(
∨
X) =

∨
f(X)

The reason why it is called continuous, is because on every cpo we can define
a topology, called the Scott-topology. A map is continuous iff it is continuous
w.r.t. the Scott-topology.

The following propositions show that the category of cpo’s with continuous
maps is cartesian closed:

Theorem 32. The cartesian product D1 ×D2 is a cpo with partial order:

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤ y1, x2 ≤ y2

Proof. Take X ⊂ D1 ×D2 directed and define:

X1 = {x1 ∈ D1 : ∃x2 ∈ D2, (x1, x2) ∈ X}
X2 = {x2 ∈ D2 : ∃x1 ∈ D1, (x1, x2) ∈ X}

39

Notice that since X is directed, both X1 and X2 are directed, thus
∨
X =

(
∨
X1,

∨
X2) is a supremum for X.

Denote ⊥1 (resp. ⊥2) for the bottom element of D1 (resp. D2), thus ⊥= (⊥1

,⊥2) is a bottom element of D1 ×D2

Definition 62. The (continuous) function space between D1 and D2 is

[D1 → D2] = {f : D1 → D2| f continuous}

we order this pointwise:

f ≤ g ⇐⇒ ∀x ∈ D1 : f(x) ≤ g(x)

Theorem 33. The function space is a cpo

Proof. Take F ⊂ [D1 → D2] directed and define:∨
F : D1 → D2 : x 7→

∨
{f(x)|f ∈ F}

We have to show that
∨
F is continuous so that

∨
F is indeed again in the

function space [D1 → D2]. The bottom element is the function x 7→⊥2.
Take X ⊂ D1 directed, we have to show that

∨
F (

∨
X) =

∨∨
F (X):∨

F (
∨
X) =

∨
{f(

∨
X)|f ∈ F}

As f itself is continuous this is equal to:∨
{
∨
f(X)|f ∈ F} =

∨∨
F (X)

We now give some usefull properties about continuity:

Theorem 34. Let f : D1×D2 → D3. Then f is continuous iff f is continuous
in each argument, i.e. ∀x1 ∈ D1, x2 ∈ D2 : f(x, x2), f(x1, x) are continuous

Proof. � Only if : Assume f(x, ·) : D2 → D3 and f(·, x) : D1 → D3 are
continuous. Let X = X1 ×X2 ⊂ D1 ×D2 be directed. Since∨

X = (
∨
X1,

∨
X2)

we have:

f(
∨
X) = f(

∨
X1,

∨
X2) =

∨
x1∈X1

f(x1,
∨
X2)

=
∨
x1∈X1

∨
x2∈X2

f(x1, x2) =
∨

(x1,x2)∈X

f(x1, x2).

40

� If : Assume f : D1 ×D2 → D3 is continuous. Let X1 ⊂ D1 be directed,
then X1 × {x} is directed. Thus by continuity of f we have:

f(
∨
X1, x) = f(

∨
X1,

∨
{x}) = f(

∨
(X1 × {x}))

=
∨

(x1,x)∈X1×{x} f(x1, x) =
∨

x1∈X1

∨
x∈{x}

f(x1, x)

=
∨
x1∈X1

f(x1, x).

For a directed set X2 ⊂ D2 it is the same.

Both application and abstraction are continuous:

Theorem 35. Define App : [D1 → D2] ×D1 → D2 : (f, x) 7→ f(x), then App
is continuous

Proof. By the previous theorem we have to show that it is continuous in each
argument:

� Fix f ∈ [D1 → D2]. We have to show that λx.f(x) is continuous, but
this follows since f = λx.f(x) and f is in the function space and thus
continuous

� Fix x ∈ D1. We have to show that h = λf.f(x) is continuous. Take
F ⊂ [D1 → D2] directed, then

h(
∨
F) = (λf.f(x))

∨
F =

∨
F (x)

By the definition of the supremum in the function space we have:∨
F (x) =

∨
{f(x) : f ∈ F} =

∨
{h(f) : f ∈ F} =

∨
h(F)

We now prove that abstraction is continuous:

Theorem 36. Let f : D1 ×D2 → D3 be a map. Define f̂ : D1 → (D2 → D3)

such that f̂(x) : D2 → D3 : y 7→ f(x, y). Then the following are equivalent:

1. f is continuous

2. f̂ is continuous and f̂(x) is continuous.

Proof. � Assume f is continuous and let X1 ⊂ D1 be directed. Then

f(
∨
X1, y) = f(

∨
(X1 × {y})) =

∨
(x1,y)∈X1×{y}

f(x1, y)

41

for y ∈ X2. Thus we can write f̂ as

f̂(
∨
X1) : D2 → D3 : y 7→

∨
(x1,y)∈X1×{y}

f(x1, y) =
∨

x1∈X1

f(x1, y).

By the definition of the supremum in a function space this equals:∨
x1∈X1

f̂(x1) : D2 → D3 : y 7→ f(x1, y).

Therefore f̂ is continuous. We now show that f̂(x) : D2 → D3 is continu-
ous. Let X2 ⊂ D2 be directed. Then:

f̂(x)(
∨
X2) = f(x,

∨
X2) = f(

∨
({x} ×X2))

=
∨

(x,x2)∈{x}×X2
f(x, x2) =

∨
x∈{x}

∨
x2∈X2

f(x, x2)

=
∨
x2∈X2

f(x, x2) =
∨

x2∈X2

f̂(x)(x2).

� Assume f̂ and f̂(x) are continuous and let X1×X2 ⊂ D1×D2 be directed,
we have to show that f is continuous in each argument. We first fix
x2 ∈ D2 and show that f(·, x2) : D1 → D3 is continuous. Since f̂ is
continuous we have:

f(
∨
X1, x2) = (f̂(

∨
X1))(x2) = (

∨
x1∈X1

f̂(x1))(x2)

By the definition of the supremum we have that∨
x1∈X1

f̂(x1) : D2 → D3 : y 7→ f(x1, y)

equals:

D2 → D3 : y 7→
∨

x1∈X1

f(x1, y).

Thus
(

∨
x1∈X1

f̂(x1))(x2) =
∨

x1∈X1

f(x1, x2).

We now fix x1 ∈ D1 and show that f(x1, ·) : D2 → D3 is continuous.

Since f̂(x) is continuous we have:

f(x1,
∨
X2) = (f̂(x1))(

∨
X2) =

∨
x2∈X2

(f̂(x1))(x2).

As above, the claim ∨
x2∈X2

f̂(x1)(x2) =
∨

x2∈X2

f(x1, x2)

also follows from the definition of the supremum.

42

3.4.2 Reflexive cpo’s as models

A reflexive cpo is a cpo such that the function space, up to isomorphism, is a
subset of the cpo itself:

Definition 63. A cpo D is reflexive if there exist continuous maps

F : D → [D → D] , G : [D → D]→ D

such that F ◦G = Id[D→D]

It will turn out that Scott’s model is a reflexive cpo and it is even stronger,
its function space is (instead of a subset) isomorphic to the cpo.

Let D be a reflexive cpo via F,G. We now define the application and inter-
pretation:

Definition 64. � For x, y ∈ D set x · y = F (x)(y)

� Let ρ be a continuous valuation in D. Define JK = JKρ : ∆→ D as follows:

JxK = ρ(x)

JcaK = a

JMNK = JMK · JNK
Jλx.MK = G(λd.JMKρ(x:=d))

We can also extend this to ∆ ⊥ by setting J⊥K =⊥.

The following lemma says that Jλx.MK is well-defined since the function G
only takes continuous functions as input:

Lemma 6. λd.JMKρ(x:=d) is continuous

Proof. We prove this by induction on the structure of M .

� If M ≡ x then λd.JMKρ(x:=d) = λd.JxKρ(x:=d) = λd.ρ(d) = ρ.

� If M ≡ y 6≡ x then λd.JMKρ(x:=d) = λd.JyKρ(x:=d) = λd.ρ(y) and since this
is a constant function we are done.

� If M ≡ N1N2 then λd.JMKρ(x:=d) = λd.JN1Kρ(x:=d)λd.JN2Kρ(x:=d), by the
induction hypothesis both of them are continuous and since the application
is continuous we are done.

� If M ≡ λy.P then

JMKρ(x:=d) = Jλy.P Kρ(x:=d) = G(λe.JP Kρ(x:=d)(y:=e)).

If we define f(d, e) := JP Kρ(x:=d)(y:=e), we can apply the induction hy-
pothesis on f . Thus f is continuous and since both abtraction and G are
continuous the statement is proven because the composition is continuous.

43

We now prove that to every reflexive object we can define a λ-model:

Theorem 37. A = (D, ·, JK) is a syntactic λ-model

Proof. The first three conditions are included in the definition of JKρ so we only
have to check Jλx.P Kρ · a = JP Kρ(x:=a) in order to be a syntactical applicative
structure.

Jλx.P Kρ · a = G(λd.JP Kρ(x:=d)) · a

As the application is x · y := F (x)(y) this equals:

F (G(λd.JP Kρ(x:=d)))(a)

And (F ◦G) = Id thus we have:

(λd.JP Kρ(x:=d))(a) = JP Kρ(x:=a)

Now we show that it is a syntactical λ-model:

∀d : JMKρ(x:=d) = JNKρ(x:=d) =⇒ λd.JMKρ(x:=d) = λd.JNKρ(x:=d)

=⇒ G(λd.JMKρ(x:=d)) = G(λd.JNKρ(x:=d))

=⇒ Jλx.MKρ = Jλx.NKρ

Theorem 38. A defined as above is extensional iff D ∼= [D → D] via F,G. So
if D is extensional it means that G ◦ F = IdD.

Proof. � Assume G ◦ F = Id, then:

∀e : de = d
′
e =⇒ ∀e : F (d)(e) = F (d

′
)(e)

=⇒ F (d) = F (d
′
)

=⇒ d = GF (d) = GF (d
′
) = d

′

� Assume A is extensional and let d ∈ D and d
′

= G(F (d)), then

d
′
e = F (d

′
)(e) = F (G(F (d)))(e) = F (d)(e) = de

Thus by extensionality we have G(F (d)) = d
′

= d.

Instead of only looking at reflexive objects in the category CPO whose ob-
jects are the complete partial orders and whose morphisms are the continuous
maps, this can be generalised to reflexive objects in arbitrary cartesian closed
categories.

44

3.4.3 Projective limit

The projective limit is taken on a projective system of cpo’s:

Definition 65. A projective system is a countable sequence (Dn, fn)n∈N with
D0, D1, ... cpo’s and fn ∈ [Dn+1 → Dn].

Definition 66. The projective limit of a projective system (Dn, fn), denoted as
D∞ = lim←−(Dn, fn), is defined as

D∞ = {(xn)n ∈ Πn∈NDn|∀n ∈ N : fn(xn+1) = xn}

with pointwise ordering: (xn)n ≤ (yn)n ⇐⇒ ∀n ∈ N : xn ≤ yn.

Theorem 39. The projective limit is a cpo

Proof. Take X ⊂ lim←−Dn directed and define:∨
X = λn.

∨
{xn|x ∈ X}

Since X directed we have ∀n : {xn|x ∈ X} is directed. Denote the supremum
as yn we need to show that (yn)n∈N ∈ D∞, i.e. fn(yn+1) = yn:

fn(yn+1) = fn(
∨
{xn+1|x ∈ X}) =

∨
fn({xn+1|x ∈ X}) =

∨
{xn|x ∈ X} = yn

Here we used the compatibility and continuity of fn.

3.4.4 Projections

Let D,D1, D2 be cpo’s. A projection is a more general way of defining the
notion of a sub cpo:

Definition 67. A pair of mappings (φ, ψ) is a projection of D2 on D1 if

� φ : D1 → D2 and ψ : D2 → D1 are continuous

� ψ ◦ φ = IdD1

� φ ◦ ψ ≤ IdD2

A given projection can be extended to a projection between the function
spaces:

Theorem 40. Let (φ, ψ) be a projection of D2 on D1. Then there exists a
projection (φ∗, ψ∗) of [D2 → D2] on [D1 → D1] defined by:

φ∗(f) = φ ◦ f ◦ ψ, ψ∗(g) = ψ ◦ g ◦ φ,

for f ∈ [D1 → D1] and g ∈ [D2 → D2]

45

Proof. The continuity of ψ∗ and φ∗ follows since it is the composition of con-
tinuous maps. So we only have to show ψ∗ ◦ φ∗ = Id and φ∗ ◦ ψ∗ ≤ Id:

φ∗(ψ∗(g)) = φ∗(ψ ◦ g ◦ φ)

= φ ◦ ψ ◦ g ◦ φ ◦ ψ
≤ Id ◦ g ◦ Id

ψ∗(φ∗(f)) = ψ∗(φ ◦ f ◦ ψ)

= ψ ◦ φ ◦ f ◦ ψ ◦ φ
= Id ◦ g ◦ Id = g

This lemma, and thus (φ∗, ψ∗), will be helpfull in constructing the model of
Scott.

Example 17. Define φ0 : D → [D → D] and ψ0 : [D → D]→ D by:

φ0(x) = λy ∈ D.x
ψ0(f) = f(⊥)

Then (φ0, ψ0) is a projection of [D → D] on D, this projection is called the
standard projection.

Proof. We have to show that φ0 and ψ0 are continuous as well as φ0(ψ0(f)) v f
and ψ0(φ0(x)) = x: Let X ⊆ D be directed, then

φ0(
∨
X) = λy ∈ D.

∨
X =

∨
x∈X

λy ∈ D.x =
∨
x∈X

φ0(x)

Let F ⊂ [D → D] be directed, then

ψ0(
∨
F) =

∨
F (⊥) =

∨
f∈F

f(⊥) =
∨
f∈F

ψ0(f)

Thus both maps are continuous.

ψ0(φ0(x)) = ψ0(λy ∈ D.x) = (λy ∈ D.x) ⊥= x

φ0(ψ0(f)) = φ0(f(⊥)) = λy ∈ D.f(⊥) v λy ∈ D.f(y) = f

46

3.4.5 Scott’s model

Our goal is to construct a cpo D∞ such that D∞ ∼= [D∞ → D∞]. We give an
explicit construction, but notice that we actually want to solve an equation. In
chapter 4 ”domain equations” of the book [15], the approach we used is further
generalised and if we change the function space, models of different λ-theories
will be solutions.
Let D be a fixed cpo with (φ0, ψ0) the standard projection of [D → D] on D.
Recursively define:

D0 = D

Dn+1 = [Dn → Dn]

(φn+1, ψn+1) = (φ∗n, ψ
∗
n)

Remark 7. Notice that the ψn and φn are well-defined since if we take D1 =
Dn and D2 = [Dn → Dn] = Dn+1 in the lemma, we have that (φ∗n, ψ

∗
n) is a

projection of Dn+2 on Dn+1.

Thus we have that (Dn, ψn)n∈N is a projective system. We now set

D∞ = lim←−(Dn, ψn).

We will show that D∞ ∼= [D∞ → D∞] and is therefore a reflexive cpo. Thus we
can conclude then that D∞ is an extensional λ-model.

We first state (without proof) some results about elements in D∞ and a
definition that will be used in proofs later on, more specifically in showing the
isomorphism of D∞ and its function space:

Theorem 41. Upto isomorphism we have:

D = D0 ⊆ D1 ⊆ D2 · ·· ⊆ D∞.

This follows from the fact that there exists a projection pair. Because of this
there exists a map Φn∞ : Dn → D∞ that identifies each element in Dn with an
element in D∞.

Theorem 42. Let x ∈ D∞, then:

� (xn)m = xmin(n,m),

� n ≤ m =⇒ xn v xm v x,

� x =
∨
n xn.

The first 2 properties follow from the fact that we can write an element in
Dn in terms of an element in Dm and vice versa. The third property follows
from the first two properties combined with the fact that for a given x ∈ D∞,
the set {xn}n∈N is directed.

We define a binary operation on D∞ which is actually the application on
D∞ when it is showed that it is a λ-model:

47

Definition 68. Let x, y ∈ D∞, then x · y :=
∨
n xn+1(y).

Thus notice that x · y = x(y).

Theorem 43. The map Ap : D∞ ×D∞ → D∞ : (x, y) 7→ x · y is continuous

This follows because xn+1 and yn are both continuous maps, as it are ele-
ments in a (continuous) function space

Other usefull properties are:

Theorem 44. Let x, y ∈ D∞, then

� xn+1 · y = xn+1 · yn = (x · yn)n

� x0 · y = x0 = (x· ⊥)0

This are easy calculations, where we use Dn ⊂ Dn+1.

Lemma 7. Let x, y ∈ D∞, then x v y ⇐⇒ ∀z ∈ D∞ : x · z v y · z

This follows from the previous theorem and that every continuous map is
monotone.

Corollary 6. Let x, y ∈ D∞, then x = y ⇐⇒ ∀z ∈ D∞ : x · z = y · z

The proofs of previous theorems are worked out in the chapter ’Construction
of models’ in [3]

The following theorem is actually an analogue to the representation theorem
of Riesz. Every function can be written as the application of 2 elements, the
Riesz representation theorem says the same, but instead of application it uses
the dot product:

Theorem 45. The cpo’s D∞ and [D∞ → D∞] are isomorphic

Proof. Define F : D∞ → [D∞ → D∞] : x 7→ λy.(x · y). We first show this map
is injective:
Assume F (x) = F (z). Thus λy.(x·y) = λy.(z·y), therefore ∀y ∈ D∞ : x·y = z·y.
The previous corrolary then implies that x = z.
To show that F is surjective we define for f ∈ [D∞ → D∞] the element f̄ =∨
n(λy ∈ Dn.(f(y))n).

In order to be the surjective we have to show that for every f ∈ [D∞ → D∞]
we can write f(y) as the application of 2 elements in D∞ because f = λy.f(y).

48

We now show that ∀y ∈ D∞ : f(y) = f̄ · y:

f̄ · y =
∨
m

f̄m+1(ym) =
∨
m

(f̄ · ym)m

=
∨
m

((
∨
n

(λy ∈ Dn.(f(y))n)) · ym)m

=
∨
m,n

(((λy ∈ Dn.(f(y))n)) · ym)m

=
∨
m

(((λy ∈ Dm.(f(y))m)) · ym)m

=
∨
m

(f(ym))m =
∨
k,l

(f(yk))l

=
∨
k

f(yk) = f(y)

The only statement we still have to show, in order to prove that F is an
isomorphism, is that F is continuous, but this follows from the continuity of the
application x · y and of abstraction.

Remark 8. Although in a λ-model we only consider equalities, we can (in the
case of Scott’s model) also define D∞ �M v N . Recall:

D∞ �M = N ⇐⇒ JMKρ = JNKρ,∀ρ

and since Im(JKρ) ⊂ D∞ we can define:

D∞ �M v N ⇐⇒ JMKρ v JNKρ,∀ρ

3.4.6 Theory of Scott’s model

In this (sub)section we will prove our main result which states that the theory
of D∞ is equivalent to K∗.

Lemma 8. N ⊂M =⇒ D∞ �M v N

Proof. We prove this by induction on the structure of M and we assume always
that N is a proper subterm of M , otherwise M ≡ N and the statement is then
trivially true. If M ≡ x or M ≡⊥, then the statement is trivial. Let M ≡M1M2

and assume N ⊂M1. Thus we have:

JMKρ = JM1Kρ · JM1Kρ = Ap(JM1Kρ, JM2Kρ).

Since Ap is continuous it is in particular monotonic. By induction we have
JNKρ v JM1Kρ, therefore:

JNM2Kρ = JNKρ · JM2Kρ v JM1Kρ · JM2Kρ = JM1M2Kρ = JMKρ

49

But N ⊂ NM2, thus we can apply the induction hypothesis again and we have
JNKρ v JNM2Kρ and thus we conclude:

JNKρ v JNM2Kρ v JMKρ

Let M ≡ λx.M1. The abstraction is also continuous and thus monotonic. Since
N ⊂ M , we have N ⊂ M1. Thus by induction we conclude JNKρ v JM1Kρ.
Therefore we have by the monotonicity of abstraction:

JNKρ v JM1Kρ v Jλx.M1Kρ = JMKρ

Lemma 9. For every N ∈ C(M) it follows that D∞ � N vM

Proof. Since N ∈ C(M), BT (N) ⊂ BT (M) we have that N ≡ N(BT (N)) is
obtained by setting some subterms of M(BT (M)) equal to ⊥. Thus

D∞ � N vM(BT (M)) = M

Theorem 46. (”Approximation theorem”) Let M ∈ ∆ ⊥, then:

D∞ �M =
∨

C(M)

Proof. If we can show that D∞ � M = M(BT (M)) we are done, because by
definition of C(M) we have that M(BT (M)) ∈ C(M) and this is cleary the
supremum, thus we have then

D∞ �M = M(BT (M)) =
∨
M(BT (M)).

Since M(BT (M)) =β M , we have to show that equality in Scott’s model is
preserved when applying the β-rule, or more general that every λ-axiom is
preserved. But since D∞ is a λ-model this is true, so we are done.

The following theorem is a more precise formulation of the approximation
theorem:

Corollary 7. For M ∈ ∆ ⊥ we have:

D∞ �M =
∨
k

M [k] (3.7)

where M [k] is the term corresponding to the tree BT k(M).

Proof. Let N ∈ C(M). Take k such that every node in BT (N) have a depth
less than k. Thus N @∼ M [k] and since M [k] ∈ C(M). Thus D∞ � M [k] v M ,
therefore the result follows from the approximation theorem.

50

Lemma 10. Let M ∈ ∆. Then M is unsolvable iff D∞ �M =⊥.

Proof. � Only if: If M unsolvable, then C(M) only contains ⊥. But the
approximation theorem tells us that D∞ � M =

∨
C(M). Thus D∞ �

M =⊥

� If: Assume M is solvable while D∞ � M =⊥. As M is solvable their
exists x1, ..., xn ∈ V ar,N ∈ ∆ : D∞ � I = (λx1, ..., xn ·M)N . Thus:

D∞ � I = (λx1, ..., xn· ⊥)N =⊥ .

Therefore we have that D∞ is inconsistent since x = xI = x ⊥=⊥ for all
x ∈ D∞. But we know that D∞ is consistent, so M is unsolvable.

Theorem 47. Let M,N ∈ ∆. Then

D∞ �M v N =⇒ ∀C[] : (C[M] solvable =⇒ C[N] solvable)

Proof. Suppose D∞ � M v N . Take C[] ∈ ∆. If C[N] is unsolvable then
C[M] v C[N]. But by the previous lemma C[N] =⊥. Thus C[M] =⊥, but
then the lemma tells us that C[M] is unsolvable.

Theorem 48. ∀C[] : (C[M] solvable =⇒ C[N] solvable) =⇒ BT (M)η ⊆η
BT (N)

Proof. If BT (M)η 6⊆η BT (N) then there is a α ∈ Seq such that BT (M)(α) is
defined and BT (M)(α) 6= BT (N)(α). Take α minimal and thus F = {M,N}
agrees along α. Thus there is a bohm-transformation π which is α−F-faithfull.
Since the faitfullness, BT (M)(α) 6= BT (N)(α) and BT (M)(α) is defined we
have that Mπ is solvable and M ∼ N . Thus there is a bohm-transformation
π

′
such that Mπ

′

solvable and Nπ
′

unsolvable but then there is a context Cπ′ []
such that Cπ′ [M] solvable and Cπ′ [N] unsolvable.

Let M,N ∈ ∆ ⊥.

Lemma 11. M @∼ N =⇒ D∞ �M v N

Proof. Since M @∼ N =⇒ ∀k : M [k] @∼ N and M [k] ∈ C(N):

∀k : D∞ �M
[k] v N =⇒ D∞ �M =

∨
k

M [k] v N

Lemma 12. M .η N =⇒ D∞ �M v N

Proof. We first show the statement for M in β ⊥-nf by induction on the struc-
ture of M:

51

1. M ≡ x: Let N ≡ λa1...an · xM1...Mn, by induction on k we show that
D∞ � xk v N and the result follows as x =

∨
k xk: If k = 0 then

x0 v λa1...an · x0a1...an

v λa1...an · x0 ⊥ ... ⊥
v λa1...an · xM1...Mn = M

Assume by induction that the theorem is true for i = 0...k, then:

xk+1 v λa1...an · xk+1a1...an

v λa1...an · xk+1(a1)k(a2)k−1...(an)k+1−n

Since x .η M , we have ai .η Mi for i = 1...n, thus by induction we have

D∞ � (ai)k−1+i vMi.

Therefore we have:

D∞ � xk+1 v λa1...an · xM1...Mn = M.

2. M ≡ λx1...xm · yM1...Mn: Since M .η N , it follows that

N = λx1...xma1...ak · yN1...NnL1...Ll

such that M1...Mn .η N1...Nn and a1...ak .η L1...Ll. The induction
hypothesis then says that M1...Mn v N1...Nn and the base case implies
that a1...ak v L1...Ll

Now the statement follows for every N :

Lemma 13. M .η N =⇒ D∞ �M = N

Proof. As the previous lemma implies D∞ � M v N we only have to show
D∞ � N vM .

M .η N =⇒ ∀k : ∃M0 : M0 →η M,M
(k)
0 = N (k)

=⇒ ∀k : D∞ � N
(k) = M

(k)
0 vM0 = M

=⇒ D∞ � N =
∨
k

N (k) vM

Theorem 49. BT (M)η ⊆η BT (N) =⇒ D∞ �M v N .

Proof. Since Mη @∼
η there are M

′
, N

′
such that M .η M ′ @∼ N

′

η & N . By the
previous lemma we have:

� M .η M ′ =⇒ D∞ �M = M ′ (also for N and N
′
)

52

� M
′
@∼ N

′
=⇒ D∞ �M

′ v N ′

Thus D∞ �M = M
′ v N ′

= N

The following theorem shows the main result:

Theorem 50. D∞ �M v N ⇐⇒ ∀C[] : (C[M] solvable =⇒ C[N] solvable)

Proof. If we combine previous propositions we get:

D∞ �M v N =⇒ ∀C[] : (C[M] solvable =⇒ C[N] solvable)

=⇒ BT (M)η ⊆η BT (N)

=⇒ D∞ �M v N

Corollary 8. (”Characterization theorem for D∞”)

D∞ �M = N ⇐⇒ K∗ `M = N

Proof. By the previous theorema we have:

D∞ �M v N ⇐⇒ ∀C[] : (C[M] solvable =⇒ C[N] solvable)

D∞ � N vM ⇐⇒ ∀C[] : (C[N] solvable =⇒ C[M] solvable)

And we have: D∞ �M = N ⇐⇒ D∞ �M v N,D∞ � N vM .

Thus by the characterization theorem we know that although D was a ran-
dom cpo, the language of the Scott-model is independent of the choice of D!

53

Chapter 4

Conclusion

In this thesis we have worked our way up to study Scott’s model. The main
result that we encountered is the fact that its language is:

� Independent of the starting cpo

� A maximal consistent theory

The study of the lambda calculus is a very rich and relatively young subject.
A lot of different concepts in mathematics are used, we used notions from

� Order theory: cpo’s

� (Algebraic) logic: combinatory logic

In research there are connections with topology (tree and visser-topologies)[7][10],
category theory (reflexive objects in cartesian closed categories generally[8]
and in more concrete ones like vector spaces [4], ...), sheaves (on topological
spaces)[2] and so on. We didn’t really use algebraic concepts like rings, but
polynomial rings are used in papers to prove properties about λ-algebras[13].
What we did is also a specific application of a more general theory called ’Model
theory’.

54

Appendices

55

Appendix A

Lambda calculus and
programming languages

In this chapter we show a little bit of intuition why the lambda calculus can
represent the computable functions by showing how some of the basics of a pro-
gramming language are implemented. We won’t work out everything because
it are all easy computations, but by showing some definitions and some calcu-
lations we can get a feeling. Examples and more operations can be found in [6]
and [12].

A.1 Boolean logic

At first sight when defining the values true and false, it might seen random but
when defining the (logical) operators and/or it will all work out well:

Definition 69. � T = λxy.x

� F = λxy.y
As you might have noticed true is actually the combinator K.

There are different ways to define the logical operators but we use the fol-
lowing convention:

Definition 70. � AND = λab.aba

� OR = λab.aab

As we expect we only have that AND is true when both arguments are true:

Theorem 51. � ANDTT = T

� ANDTF = F

� ANDFT = F

56

� ANDFF = F

Proof.

ANDTT = (λab.aba)(λxy.x)(λxy.x) = (λxy.x)(λxy.x)(λxy.x) = λxy.x = T

ANDFT = (λab.aba)(λxy.y)(λxy.x) = (λxy.y)(λxy.x)(λxy.y) = λxy.y = F

The others are analogue.

Also the expected values for the OF operation will give the expected values.

A.2 Conditional statements

We can also define IfThenElse:

Definition 71. IfThenElse = λx.x

Remark 9. Notice that although T or F are the only usefull/important inputs,
it is also defined for other lambda terms but then it doesn’t make (any) sense.

Theorem 52. � IfThenElseTMN = M

� IfThenElseTMN = N

Proof.

IfThenElseTMN = (λx.x)TMN) = TMN = (λxy.x)MN = M

IfThenElseFMN = (λx.x)FMN) = FMN = (λxy.y)MN = N

A.3 Numbers and arithmetic

Another important aspect are the numbers:

Definition 72. The term corresponding to n ∈ N, denoted by n̄, is defined as:

n̄ = λfx.fnx

where fnx = f(...(f(x))...) with f repeated n times. The term n̄ is called the
n-th Church Numeral.

To make sure this definition is how we would expect we have following defi-
nitions and theorems:

Definition 73. � The successor function: succ = λnfx.f(nfx)

� The add function: add = λnmfx.nf(mfx)

57

� The multiplication function: mult = λnmfx.n(mf)

Theorem 53. � succn̄ = λnfx.f(nfx))λfx.fnx = λfx.f((λfx.fnx)fx) =
λfx.f(fnx) = λfx.fn+1x = ¯n+ 1

� addn̄m̄ = λfx.n̄f(m̄fx) = (λfx.n̄f)((λfx.fmx)fx) = λfx.n̄f(fmx) =
λfx.(λfx.fnx)f(fmx) = λfx.fn(fm(x)) = λfx.fn+mx = ¯n+m

Analogue we have that multn̄m̄ = n̄m.

We can also define the exponential function, predicate function and so on.
A slightly harder example is that of the factorial function: factn̄ = n̄!.

Definition 74. factn̄ = IfThenElse(IsZero(n̄))(1̄)(multn̄(fact(predn̄)))

So notice here that we recursively defined it and if we would work it out on
a example this can be pretty long. To see a (almost complete) computation of
the factorial of 2, I refer you to page 23 in the notes [12]. Also notice that we
defined the term by using the term itself, but this problem can be solved by
defining it as follows:

fact rec = λfn.IfThenElse(IsZero(n̄))(1̄)(multn̄(f(predn̄)))

fact = λn.fact recfact recn̄

The book [9] is a book that, probably, gives all essentials of a programming
language using lambda calculus, including datastructures and so on, in a non-
mathematical way.
Thus although it is very hard to write a program using the lambda calculus, it
seems possible.

58

Bibliography

[1] Stefania Lusin Antonino Salibra. The lattice of lambda-theories. 2003.

[2] Steve Awodey. Topological Representation of the Lambda calculus. 1999.

[3] H.P. Barendregt. The Lambda Calculus, Its syntax and semantics, revised
edition. Vol. Studies in logic and the foundation of mathematics. North-
Holland, 1984.

[4] Steve Zdancewic Benoit Valiron. Modeling Simply-Typed Lambda Calculi
in the Category of Finite Vector Spaces. 2014.

[5] Course slides of The power of lambda calculus and types. http://www.
cs.ioc.ee/ewscs/2016/geuvers/geuvers-slides-lecture1.pdf.

[6] Manuel Eberl. The untyped lambda calculus. https://www21.in.tum.de/

~eberlm//lambda_paper.pdf.

[7] Silvia Ghilezan. Full intersection types and topologies in lambda calculus.
2000.

[8] Giulio Manzonetto. Models and theories of lambda calculus. 2009.

[9] Greg Michaelson. an introduction to functional programming through lambda
calculus. 1988.

[10] Fer-Jan de Vries Paula Severi. Continuity and Discontinuity in Lambda
Calculus. 2005.

[11] Antonino Salibra. A continuum of theories of lambda calculus without se-
mantics. https://pdfs.semanticscholar.org/348b/4275200514bb295e4cba47879a7f9cdc6891.
pdf.

[12] Peter Selinger. Lecture notes on the Lambda Calculus. https://www.

irif . fr / ~mellies / mpri / mpri - ens / biblio / Selinger - Lambda -

Calculus-Notes.pdf.

[13] Peter Selinger. The Lambda Calculus is Algebraic. https://www.mscs.
dal.ca/~selinger/papers/combinatory.pdf.

[14] Morten Heine Sorensen. Lectures on the Curry-Howard Isomorphism. Vol. Stud-
ies in logic and the foundation of mathematics. Elsevier, 2006.

[15] Viggo Stoltenberg-Hansen. Mathematical theory of domains. Cambridge
University Press, 2008.

59

http://www.cs.ioc.ee/ewscs/2016/geuvers/geuvers-slides-lecture1.pdf
http://www.cs.ioc.ee/ewscs/2016/geuvers/geuvers-slides-lecture1.pdf
https://www21.in.tum.de/~eberlm//lambda_paper.pdf
https://www21.in.tum.de/~eberlm//lambda_paper.pdf
https://pdfs.semanticscholar.org/348b/4275200514bb295e4cba47879a7f9cdc6891.pdf
https://pdfs.semanticscholar.org/348b/4275200514bb295e4cba47879a7f9cdc6891.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://www.mscs.dal.ca/~selinger/papers/combinatory.pdf
https://www.mscs.dal.ca/~selinger/papers/combinatory.pdf

	Abstract
	Introduction
	Theories
	The lambda theory
	Free variables
	Theory of lambda
	Equality of theories
	Combinators
	Extensionality
	Consistency
	Lattice of theories
	Subterms
	Normal-form
	Solvability
	Hilbert-Post complete
	Labelled terms

	The theory K

	Bohm trees
	Trees
	Relations on Bohm-like trees
	Bohm transformations

	Models
	Combinatory logic and algebra's
	Combinatory logic
	Combinatory algebra's

	Term model
	Syntactical models
	Scott's model
	Complete partial orders
	Reflexive cpo's as models
	Projective limit
	Projections
	Scott's model
	Theory of Scott's model

	Conclusion
	Appendices
	Lambda calculus and programming languages
	Boolean logic
	Conditional statements
	Numbers and arithmetic

